scholarly journals Indication of Highly Correlated Electron Transport and Mott Insulator in Disordered Multilayer Ferritin Structures (DMFS)

Author(s):  
Chris Rourk ◽  
Yunbo Huang ◽  
Minjing Chen ◽  
Cai Shen

Highly-correlated electrons – electrons that engage in strong electron-electron interactions – have been observed in transition metal oxides and quantum dots and can create unusual material behavior that is difficult to model, such as switching between a low resistance metal state and a high resistance Mott insulator state. Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin (a transition metal (iron) oxide storage protein) have been previously reported that indicate that highly-correlated electron transport is occurring, consistent with models of electron transport in quantum dots. This paper reports the results of the effect of various degrees of structural homogeneity on the electrical characteristics of these ferritin arrays, as well as demonstrating that these structures can provide a switching function associated with the circuit that they are contained within, consistent with the observed behavior of highly-correlated electrons.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4527
Author(s):  
Christopher Rourk ◽  
Yunbo Huang ◽  
Minjing Chen ◽  
Cai Shen

Electron tunneling in ferritin and between ferritin cores (a transition metal (iron) oxide storage protein) in disordered arrays has been extensively documented, but the electrical behavior of those structures in circuits with more than two electrodes has not been studied. Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin that have been previously reported indicate that strongly correlated electron transport is occurring, consistent with models of electron transport in quantum dots. Strongly correlated electrons–electrons that engage in strong electron-electron interactions have been observed in transition metal oxides and quantum dots and can create unusual material behavior that is difficult to model, such as switching between a low resistance metal state and a high resistance Mott insulator state. This paper reports the results of the effect of various degrees of structural homogeneity on the electrical characteristics of these ferritin arrays. These results demonstrate for the first time that these structures can provide a switching function associated with the circuit that they are contained within, consistent with the observed behavior of strongly correlated electrons and Mott insulators.


2021 ◽  
Author(s):  
Christopher Rourk ◽  
Yunbo Huang ◽  
Minjing Chen ◽  
Cai Shen

Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin have been previously reported that indicate that highly-correlated electron transport is occurring, consistent with models of electron transport in quantum dots. The parametric tests reported in this paper were performed to evaluate this reported evidence in greater detail. As shown herein, the evidence from these studies establishes that layer-by-layer deposition of ferritin does not result in consistent formation of disordered multilayer ferritin structures (DMFS) that are sufficient to create devices that provide repeatable electrical characteristics, but can nonetheless provide additional evidence of highly-correlated electron transport.


1999 ◽  
Vol 60 (24) ◽  
pp. 16906-16912 ◽  
Author(s):  
Géza Tóth ◽  
Alexei O. Orlov ◽  
Islamshah Amlani ◽  
Craig S. Lent ◽  
Gary H. Bernstein ◽  
...  

1997 ◽  
Vol 11 (04n05) ◽  
pp. 355-667 ◽  
Author(s):  
P. Schlottmann

One-dimensional conductors are a long-standing topic of research with direct applications to organic conductors and mesoscopic rings. The discovery of the ceramic high-temperature superconductors has revitalized the interest in low-dimensional charge and spin fluctuations of highly correlated electron systems. Several mechanisms proposed to explain the high-T c superconductors invoke properties of the two-dimensional Hubbard model, but probably also some one-dimensional aspects are relevant. Numerous one-dimensional models for correlated electrons have been studied with various approximate, asymptotically exact and exact methods. These results lead to the concept of Luttinger liquid for interacting electron gases without excitation gaps (metallic systems). Characteristic of Luttinger liquids are the charge and spin separation, marginal Fermi liquid properties, e.g. the absence of quasiparticles in the vicinity of the Fermi surface, nonuniversal power-law singularities in the one-particle spectral function and the related absence of a discontinuity in the momentum distribution at the Fermi level, the power-law decay of correlation functions for long times and large distances, persistent currents in finite rings, etc. Due to the peculiarities of the phase space in one dimension some of the models have sufficient conserved currents to be completely integrable. We review exact results derived within the framework of Bethe's ansatz for integrable one-dimensional models of correlated electrons. The Bethe-ansatz method is presented by explicitly showing the steps leading to the solution of the N-component electron gas interacting via a δ-function potential (repulsive and attractive interaction), which is probably the simplest model of correlated electrons. Emphasis is given to the procedure to extract the groundstate properties, the classification of states, the excitation spectrum, the thermodynamics and finite size effects, such as critical exponents of correlation functions and persistent currents. The method is then applied to numerous other models, e.g. (i) a two-band model involving attractive and repulsive potentials and crystalline fields splitting the bands, (ii) the traditional Hubbard chain with attractive and repulsive U, (iii) the degenerate Hubbard model with repulsive U, which displays a metal–insulator transition at a finite U, (iv) a two-band Hubbard model with repulsive U, (v) the traditional supersymmetric t–J model (vi) a two-band supersymmetric t–J model with band-splitting and (vii) the N-component supersymmetric t–J model. Finally, results for models with long-range interactions, in particular r-2 and sinh -2(r) potentials, are briefly reviewed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Ravnik ◽  
Yevhenii Vaskivskyi ◽  
Jaka Vodeb ◽  
Polona Aupič ◽  
Igor Vaskivskyi ◽  
...  

AbstractForcing systems through fast non-equilibrium phase transitions offers the opportunity to study new states of quantum matter that self-assemble in their wake. Here we study the quantum interference effects of correlated electrons confined in monolayer quantum nanostructures, created by femtosecond laser-induced quench through a first-order polytype structural transition in a layered transition-metal dichalcogenide material. Scanning tunnelling microscopy of the electrons confined within equilateral triangles, whose dimensions are a few crystal unit cells on the side, reveals that the trajectories are strongly modified from free-electron states both by electronic correlations and confinement. Comparison of experiments with theoretical predictions of strongly correlated electron behaviour reveals that the confining geometry destabilizes the Wigner/Mott crystal ground state, resulting in mixed itinerant and correlation-localized states intertwined on a length scale of 1 nm. The work opens the path toward understanding the quantum transport of electrons confined in atomic-scale monolayer structures based on correlated-electron-materials.


2021 ◽  
Author(s):  
James O. Thomas ◽  
Jakub K. Sowa ◽  
Bart Limburg ◽  
Xinya Bian ◽  
Charalambos Evangeli ◽  
...  

Experimental studies of electron transport through an edge-fused porphyrin oligomer in a graphene junction are interpreted within a Hubbard dimer framework.


2016 ◽  
Vol 879 ◽  
pp. 2158-2163 ◽  
Author(s):  
Misato Yamagata ◽  
Yasuhide Inoue ◽  
Yasumasa Koyama

The highly-correlated electron system Sr1-xSmxMnO3 (SSMO) with the simple-perovskite structure has been found to exhibit fascinating electronic states accompanying antiferromagnetic and ferromagnetic orderings. It was, in particular, reported that the electronic state for 0.46 ≤ x ≤ 0.54 was characterized by the coexistence state consisting of the A-type antiferromagnetic and ferromagnetic states. However, the features of the coexistence state in this Sm-content range have not been understood yet. We have thus investigated the crystallographic features of prepared SSMO samples with 0.46 ≤ x ≤ 0.55, mainly by transmission electron microscopy. As a result, all prepared SSMO samples were first confirmed to have the orthorhombic-Pnma structure at 300 K. When the temperature was lowered from 300 K, in the case of x=0.47, the disordered-Pnma state was found to be transformed into an orbital-modulated (OM) state accompanying an incommensurate modulation. The notable feature of the OM state is that the state becomes unstable with increasing Sm contents at 100 K. In other words, the OM state was never changed into the CE-type state with the orbital and charge modulations. In addition, no orbital-ordered state for the A-type antiferromagnetic ordering was also found for 0.46 ≤ x ≤ 0.55.


Sign in / Sign up

Export Citation Format

Share Document