Thymic Immunophenotype, and Expression of CD4 and Myeloid Antigens is Associated with Outcome in Adult Patients with T�Cell Acute Lymphoblastic Leukemia

2015 ◽  
Vol 03 (01) ◽  
Author(s):  
Areej Al Mugairi Bakul I Dalal
Leukemia ◽  
2006 ◽  
Vol 20 (3) ◽  
pp. 537-539 ◽  
Author(s):  
M R Mansour ◽  
D C Linch ◽  
L Foroni ◽  
A H Goldstone ◽  
R E Gale

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Inés Sentís ◽  
Santiago Gonzalez ◽  
Eulalia Genescà ◽  
Violeta García-Hernández ◽  
Ferran Muiños ◽  
...  

Abstract Background Adult T cell acute lymphoblastic leukemia (T-ALL) is a rare disease that affects less than 10 individuals in one million. It has been less studied than its cognate pediatric malignancy, which is more prevalent. A higher percentage of the adult patients relapse, compared to children. It is thus essential to study the mechanisms of relapse of adult T-ALL cases. Results We profile whole-genome somatic mutations of 19 primary T-ALLs from adult patients and the corresponding relapse malignancies and analyze their evolution upon treatment in comparison with 238 pediatric and young adult ALL cases. We compare the mutational processes and driver mutations active in primary and relapse adult T-ALLs with those of pediatric patients. A precise estimation of clock-like mutations in leukemic cells shows that the emergence of the relapse clone occurs several months before the diagnosis of the primary T-ALL. Specifically, through the doubling time of the leukemic population, we find that in at least 14 out of the 19 patients, the population of relapse leukemia present at the moment of diagnosis comprises more than one but fewer than 108 blasts. Using simulations, we show that in all patients the relapse appears to be driven by genetic mutations. Conclusions The early appearance of a population of leukemic cells with genetic mechanisms of resistance across adult T-ALL cases constitutes a challenge for treatment. Improving early detection of the malignancy is thus key to prevent its relapse.


2013 ◽  
Vol 90 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Hiroaki Shimizu ◽  
Hiroshi Handa ◽  
Nahoko Hatsumi ◽  
Satoru Takada ◽  
Takayuki Saitoh ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehan Li ◽  
Cunte Chen ◽  
Rili Gao ◽  
Xibao Yu ◽  
Youxue Huang ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of leukemia with poor prognosis, and biomarkers and novel therapeutic targets are urgently needed for this disease. Our previous studies have found that inhibition of the B-cell leukemia/lymphoma 11B (BCL11B) gene could significantly promote the apoptosis and growth retardation of T-ALL cells, but the molecular mechanism underlying this effect remains unclear. This study intends to investigate genes downstream of BCL11B and further explore its function in T-ALL cells. We found that PTK7 was a potential downstream target of BCL11B in T-ALL. Compared with the healthy individuals (HIs), PTK7 was overexpressed in T-ALL cells, and BCL11B expression was positively correlated with PTK7 expression. Importantly, BCL11B knockdown reduced PTK7 expression in T-ALL cells. Similar to the effects of BCL11B silencing, downregulation of PTK7 inhibited cell proliferation and induced apoptosis in Molt-4 cells via up-regulating the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p27. Altogether, our studies suggest that PTK7 is a potential downstream target of BCL11B, and downregulation of PTK7 expression via inhibition of the BCL11B pathway induces growth retardation and apoptosis in T-ALL cells.


Sign in / Sign up

Export Citation Format

Share Document