Biomarker Research
Latest Publications


TOTAL DOCUMENTS

375
(FIVE YEARS 191)

H-INDEX

28
(FIVE YEARS 10)

Published By Springer (Biomed Central Ltd.)

2050-7771, 2050-7771

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiao Wang ◽  
Changxin Yu ◽  
Junyi Zhuang ◽  
Wenxin Qi ◽  
Jiawen Jiang ◽  
...  

AbstractThe negatively charged aminophospholipid, phosphatidylserine (PtdSer), is located in the inner leaflet of the plasma membrane in normal cells, and may be exposed to the outer leaflet under some immune and blood coagulation processes. Meanwhile, Ptdser exposed to apoptotic cells can be recognized and eliminated by various immune cells, whereas on the surface of activated platelets Ptdser interacts with coagulation factors prompting enhanced production of thrombin which significantly facilitates blood coagulation. In the case where PtdSer fails in exposure or mistakenly occurs, there are occurrences of certain immunological and haematological diseases, such as the Scott syndrome and Systemic lupus erythematosus. Besides, viruses (e.g., Human Immunodeficiency Virus (HIV), Ebola virus (EBOV)) can invade host cells through binding the exposed PtdSer. Most recently, the Corona Virus Disease 2019 (COVID-19) has been similarly linked to PtdSer or its receptors. Therefore, it is essential to comprehensively understand PtdSer and its functional characteristics. Therefore, this review summarizes Ptdser, its eversion mechanism; interaction mechanism, particularly with its immune receptors and coagulation factors; recognition sites; and its function in immune and blood processes. This review illustrates the potential aspects for the underlying pathogenic mechanism of PtdSer-related diseases, and the discovery of new therapeutic strategies as well.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
José-Ángel Hernández-Rivas ◽  
Rafael Ríos-Tamayo ◽  
Cristina Encinas ◽  
Rafael Alonso ◽  
Juan-José Lahuerta

AbstractThe increase in the number of therapeutic alternatives for both newly diagnosed and relapsed/refractory multiple myeloma (RRMM) patients has widened the clinical scenario, leading to a level of complexity that no algorithm has been able to cover up to date. At present, this complexity increases due to the wide variety of clinical situations found in MM patients before they reach the status of relapsed/refractory disease. These different backgrounds may include primary refractoriness, early relapse after completion of first-line therapy with latest-generation agents, or very late relapse after chemotherapy or autologous transplantation. It is also important to bear in mind that many patient profiles are not fully represented in the main randomized clinical trials (RCT), and this further complicates treatment decision-making. In RRMM patients, the choice of previously unused drugs and the number and duration of previous therapeutic regimens until progression has a greater impact on treatment efficacy than the adverse biological characteristics of MM itself. In addition to proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies and corticosteroids, a new generation of drugs such as XPO inhibitors, BCL-2 inhibitors, new alkylators and, above all, immunotherapy based on conjugated anti-BCMA antibodies and CAR-T cells, have been developed to fight RRMM. This comprehensive review addresses the fundamentals and controversies regarding RRMM, and discusses the main aspects of management and treatment. The basis for the clinical management of RRMM (complexity of clinical scenarios, key factors to consider before choosing an appropriate treatment, or when to treat), the arsenal of new drugs with no cross resistance with previously administered standard first line regimens (main phase 3 clinical trials), the future outlook including the usefulness of abandoned resources, together with the controversies surrounding the clinical management of RRMM patients will be reviewed in detail.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinxin Li ◽  
Mengzhen Han ◽  
Hongwei Zhang ◽  
Furong Liu ◽  
Yonglong Pan ◽  
...  

AbstractZinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Huajun Zhang ◽  
Wuyang Zhang ◽  
Longying Jiang ◽  
Yongheng Chen

AbstractHepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumors in the world. Therapeutic options for advanced HCC are limited. Systemic treatment, especially with conventional cytotoxic drugs, is usually ineffective. For more than a decade, sorafenib has been the only systemic drug that has been proven to be clinically effective for treating advanced HCC. However, over the past three years, the rapid progress of molecular targeted therapies has dramatically changed the treatment landscape for advanced HCC. Immune checkpoint therapies are now being incorporated into HCC therapies, and their combination with molecular targeted therapy is emerging as a tool to enhance the immune response. In this review, we summarize the development and progress of molecular targeted agents and immunotherapies in HCC.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sophie Voruz ◽  
Sabine Blum ◽  
Laurence de Leval ◽  
Jacqueline Schoumans ◽  
Françoise Solly ◽  
...  

AbstractRelapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) has a very poor prognosis with a median overall survival of four to nine months. Achieving a complete molecular response is most often required to obtain a sustained leukemia-free survival after allogeneic hematopoietic stem cell transplantation. Immunotherapies targeting CD19, CD20, or CD22 are very efficient in achieving this goal. However, in the absence of the expression of these immunotherapeutic targets by lymphoblasts, treatment options are extremely scarce. We report the successful treatment of a 26-year-old man who suffered R/R, CD19, CD20, and CD22 negative B-ALL targeting Bcl-2 and CD38 by combining venetoclax and daratumumab with chemotherapy.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Francesco Tarantini ◽  
Cosimo Cumbo ◽  
Luisa Anelli ◽  
Antonella Zagaria ◽  
Giorgina Specchia ◽  
...  

AbstractEarly T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a rare, distinct subtype of T-ALL characterized by genomic instability, a dismal prognosis and refractoriness to standard chemotherapy. Since its first description in 2009, the expanding knowledge of its intricate biology has led to the definition of a stem cell leukemia with a combined lymphoid-myeloid potential: the perfect trick. Several studies in the last decade aimed to better characterize this new disease, but it was recognized as a distinct entity only in 2016. We review current insights into the biology of ETP-ALL and discuss the pathogenesis, genomic features and their impact on the clinical course in the precision medicine era today.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Chi T. Viet ◽  
Xinyu Zhang ◽  
Ke Xu ◽  
Gary Yu ◽  
Kesava Asam ◽  
...  

Abstract Background Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. Methods Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. Results There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). Conclusions Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Huang Ao ◽  
Zhang Xin ◽  
Zhou Jian

AbstractThe past years have witnessed the vigorous development of immunotherapy, mainly immune checkpoint inhibitors (ICIs) targeting the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Indeed, ICIs have largely revolutionized the management and improved the prognosis of patients with intermediate and advanced hepatocellular carcinoma (HCC). However, biomarker-based stratification of HCC patients for optimal response to ICI treatment is still of unmet need and again, there exists the necessity to dynamically monitor treatment effect in real-time manner. The role of conventional biomarkers in immunotherapy surveillance is largely limited by spatial and temporal tumor heterogeneity whereas liquid biopsy seems to be promising to circumvent tumor heterogeneity to identify candidate patients who may response to immunotherapy, to dynamically monitor treatment effect and to unveil resistance mechanism. Herein, we provide a thorough review about the potential utility of liquid biopsy in immunotherapy for HCC and discuss its future perspectives.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruo Han Huang ◽  
Le Xin Wang ◽  
Jing He ◽  
Wen Gao

AbstractCancer is an intricate disease with inherent intra-tumor heterogeneity at the cellular level because of genetic changes and environmental differences. Cellular heterogeneity exists even within the same tumor type. Small deviations in a genome or transcriptome can lead to significant differences in function. Conventional bulk population sequencing, which produces admixed populations of cells, can only provide an average expression signal for one cell population, ignoring differences between individual cells. Important advances in sequencing have been made in recent years. Single cell sequencing starts in a single cell, thereby increasing our capability to characterize intratumor heterogeneity. This technology has been used to analyze genetic variation, specific metabolic activity, and evolutionary processes in tumors, which may help us understand tumor occurrence and development and improve our understanding of the tumor microenvironment. In addition, it provides a theoretical basis for the development of clinical treatments, especially for personalized medicine. In this article, we briefly introduce Single cell sequencing technology, summarize the application of Single cell sequencing to study the tumor microenvironment, as well as its therapeutic application in different clinical procedures.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasaman Asaadi ◽  
Fatemeh Fazlollahi Jouneghani ◽  
Sara Janani ◽  
Fatemeh Rahbarizadeh

AbstractBy the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.


Sign in / Sign up

Export Citation Format

Share Document