Two Scale Finite Element Analysis of Bone Strength by using a µ-CT Measured Trabecular Tissue Representative Volume Element

Author(s):  
E. Nakamachi ◽  
Y. Morita ◽  
Y. Yamazaki ◽  
H. Kuramae
Author(s):  
Seyed Hamid Reza Sanei ◽  
Randall Doles

Abstract The aim of this study is to present a representative volume element (RVE) for nanocomposites with different microstructural features using a stochastic finite element approach. To that end, computer-simulated microstructures of nanocomposites were generated to include a variety of uncertainty present in geometry, orientation, and distribution of carbon nanotubes. Microstructures were converted into finite element models based on an image-based approach for the determination of elastic properties. For each microstructure type, 50 realizations of synthetic microstructures were generated to capture the variability as well as the average values. Computer-simulated microstructures were generated at different length scales to determine the change in mechanical properties as a function of length scale. A representative volume element is defined at a length scale beyond which no change in variability is observed. The results show that there is no universal RVE applicable to all properties and microstructures; however, the RVE size is highly dependent on microstructural features. Microstructures with agglomeration tend to require larger RVE. Similarly, random microstructures require larger RVE when compared with aligned microstructures.


2017 ◽  
Vol 08 (02) ◽  
pp. 1750003 ◽  
Author(s):  
M. M. Shahzamanian ◽  
W. J. Basirun

CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200[Formula: see text][Formula: see text] at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.


Author(s):  
Waleed K. Ahmed ◽  
Wail Al-Rifaie ◽  
Y. Al-Douri ◽  
Mostefa Bourchak

Due to its distinguished properties especially being isotropic, particulate reinforced composite is considered as one of the attractive material for wide range of applications, where the relatively low manufacturing cost is a desirable advantage. In the present analysis, deteriorated particles embedded in particulate reinforced composite have been investigated. The impact of the fractured particles is studied through the principles of fracture mechanics using finite element method. Mainly the stiffness variation of the composite due to the presence of the fractured particles is mainly predicted, since it is considered as an important factor especially from the view point of the damage-tolerant design of composite structures. A representative volume element (RVE) has been selected to represent the particulate composite with different particle volume fractions. It is important to point out that based on a previous investigation and comparison between two and three dimensional finite element analysis for a particulate reinforced composite, two-dimensional, plane strain finite element analysis is used to estimate the stresses and deformation that taken place. Uniaxial tensile stress perpendicular to the crack face of the fractured particle has been applied to the representative volume element. Due to symmetry of the studied geometries, quarter of the representative volume element is modeled via finite element method with a consistent mesh as possible to maintain reliable results. Linear elastic fracture mechanics (LEFM) is adopted through estimating stress intensity factor (SIF) of the cracked particles. Basically, the investigation covers the assessment of fractured particles with different crack lengths, where the particle’s stiffness is considered as a substantial parameter in the analysis in combination with others. Moreover, various particles volume fractions are taken into account to figure out their influence on the effective Young’s modulus of the representative volume element chosen for the studied cases. Multiple point constraints (MPC) technique is adopted in the finite element model to calculate the effective stiffness of the fractured particle. In general, it has been shown that there is a considerable influence of the deteriorated particles on increasing stress intensity factor levels at the crack tip as long as the crack length increases with respect to the particle size, and this basically depends on the stiffness ratio of the matrix/particle considered in the analysis. In the other hand, it has been noticed that a significant reduction in the effective stiffness of the particulate composite which is calculated based on the modeled representative volume element as a function of the crack length.


Sign in / Sign up

Export Citation Format

Share Document