scholarly journals Causality in Higher Order Process Theories

2021 ◽  
Vol 343 ◽  
pp. 265-300
Author(s):  
Matt Wilson ◽  
Giulio Chiribella
2011 ◽  
Vol 403-408 ◽  
pp. 4859-4866 ◽  
Author(s):  
Saptarshi Das ◽  
Amitava Gupta ◽  
Shantanu Das

Generalization of the frequency domain robust tuning has been proposed in this paper for a family of fractional order (FO) PI/PID controllers. The controller tuning is enhanced with two new FO reduced parameter templates which are capable of capturing higher order process dynamics with much better accuracy. The paper validates the proposed methodology with a standard test-bench of higher order processes to show the relative merits of the family of FO controller structures.


1996 ◽  
Vol 131 (2) ◽  
pp. 141-178 ◽  
Author(s):  
Davide Sangiorgi

2009 ◽  
Vol 32 (2) ◽  
pp. 214-215
Author(s):  
George Mandler

AbstractThe notion that human associative learning is a usually conscious, higher-order process is one of the tenets of organization theory, developed over the past century. Propositional/sequential encoding is one of the possible types of organizational structures, but learning may also involve other structures.


2001 ◽  
Vol 266 (1-2) ◽  
pp. 839-852 ◽  
Author(s):  
Mingsheng Ying ◽  
Martin Wirsing

2002 ◽  
Vol 9 (49) ◽  
Author(s):  
Mikkel Nygaard ◽  
Glynn Winskel

A small but powerful language for higher-order nondeterministic processes is introduced. Its roots in a linear domain theory for concurrency are sketched though for the most part it lends itself to a more operational account. The language can be viewed as an extension of the lambda calculus with a ``prefixed sum'', in which types express the form of computation path of which a process is capable. Its operational semantics, bisimulation, congruence properties and expressive power are explored; in particular, it is shown how it can directly encode process languages such as CCS, CCS with process passing, and mobile ambients with public names.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 384
Author(s):  
Timothée Hoffreumon ◽  
Ognyan Oreshkov

We develop an extension of the process matrix (PM) framework for correlations between quantum operations with no causal order that allows multiple rounds of information exchange for each party compatibly with the assumption of well-defined causal order of events locally. We characterise the higher-order process describing such correlations, which we name the multi-round process matrix (MPM), and formulate a notion of causal nonseparability for it that extends the one for standard PMs. We show that in the multi-round case there are novel manifestations of causal nonseparability that are not captured by a naive application of the standard PM formalism: we exhibit an instance of an operator that is both a valid PM and a valid MPM, but is causally separable in the first case and can violate causal inequalities in the second case due to the possibility of using a side channel.


2004 ◽  
Vol 11 (21) ◽  
Author(s):  
Glynn Winskel ◽  
Francesco Zappa Nardelli

This paper introduces new-HOPLA, a concise but powerful language for higher-order nondeterministic processes with name generation. Its origins as a metalanguage for domain theory are sketched but for the most part the paper concentrates on its operational semantics. The language is typed, the type of a process describing the shape of the computation paths it can perform. Its transition semantics, bisimulation, congruence properties and expressive power are explored. Encodings are given of well-known process algebras, including pi-calculus, Higher-Order pi-calculus and Mobile Ambients.


1996 ◽  
Vol 6 (5) ◽  
pp. 409-453 ◽  
Author(s):  
Benjamin Pierce ◽  
Davide Sangiorgi

The π-calculus is a process algebra that supports mobility by focusing on the communication of channels. Milner's presentation of the π-calculus includes a type system assigning arities to channels and enforcing a corresponding discipline in their use. We extend Milner's language of types by distinguishing between the ability to read from a channel, the ability to write to a channel, and the ability both to read and to write. This refinement gives rise to a natural subtype relation similar to those studied in typed λ-calculi. The greater precision of our type discipline yields stronger versions of standard theorems on the π-calculus. These can be used, for example, to obtain the validity of β-reduction for the more efficient of Milner's encodings of the call-by-value λ-calculus, which fails in the ordinary π-calculus. We define the syntax, typing, subtyping, and operational semantics of our calculus, prove that the typing rules are sound, apply the system to Milner's λ-calculus encodings, and sketch extensions to higher-order process calculi and polymorphic typing.


Sign in / Sign up

Export Citation Format

Share Document