scholarly journals A decidable quantified fragment of set theory with ordered pairs and some undecidable extensions

2012 ◽  
Vol 96 ◽  
pp. 224-237
Author(s):  
Domenico Cantone ◽  
Cristiano Longo
Keyword(s):  
1999 ◽  
Vol 9 (5) ◽  
pp. 545-567 ◽  
Author(s):  
LAWRENCE C. PAULSON

A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard Zermelo–Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel's, but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered, as well as final coalgebras defined with respect to parameters. The disjoint sum construction is replaced by a smoother treatment of urelements that simplifies many of the derivations.The theory facilitates machine implementation of recursive definitions by letting both inductive and coinductive definitions be represented as fixed points. It has already been applied to the theorem prover Isabelle (Paulson, 1994).


1954 ◽  
Vol 19 (3) ◽  
pp. 197-200 ◽  
Author(s):  
Václav Edvard Beneš

1. In this paper we construct a model for part of the system NF of [4]. Specifically, we define a relation R of natural numbers such that the R-relativiseds of all the axioms except P9 of Hailperin's finitization [2] of NF become theorems of say Zermelo set theory. We start with an informal explanation of the model.2. Scrutiny of P1-P8 of [2] suggests that a model for these axioms might be constructed by so to speak starting with a universe that contained a “universe set” and a “cardinal 1”, and passing to its closure under the operations implicit in P1-P7, viz., the Boolean, the domain, the direct product, the converse, and the mixtures of product and inverse operations represented by P3 and P4. To obtain such closure we must find a way of representing the operations that involve ordered pairs and triples.We take as universe of the model the set of natural numbers ω; we let 0 represent the “universe set” and 1 represent “cardinal 1”. Then, in order to be able to refer in the model to the unordered pair of two sets, we determine all representatives of unordered pairs in advance by assigning them the even numbers in unique fashion (see d3 and d25); we can now define the operations that involve ordered pairs and triples, and obtain closure under them using the odd numbers. It remains to weed out, as in d26, the unnecessary sets so as to satisfy the axiom of extensionality.


1982 ◽  
Vol 12 (2) ◽  
pp. 353-374 ◽  
Author(s):  
Randall R. Dipert

One of the most significant discoveries of early twentieth century mathematical logic was a workable definition of ‘ordered pair’ totally within set theory. Norbert Wiener, and independently Casimir Kuratowski, are usually credited with this discovery. A definition of ‘ordered pair’ held the key to the precise formulation of the notions of ‘relation’ and ‘function’ — both of which are probably indispensable for an understanding of the foundations of mathematics. The set-theoretic definition of ‘ordered pair’ thus turned out to be a key victory for logicism, providing one admits set theory is logic. The definition also was instrumental in achieving the appearance of ontological economy — since it seemed only sets were needed — although this feature was emphasized only later.


2018 ◽  
Vol 24 (4) ◽  
pp. 393-451
Author(s):  
ALEX OLIVER ◽  
TIMOTHY SMILEY

AbstractAlmost all set theorists pay at least lip service to Cantor’s definition of a set as a collection of many things into one whole; but empty and singleton sets do not fit with it. Adapting Dana Scott’s axiomatization of the cumulative theory of types, we present a ‘Cantorian’ system which excludes these anomalous sets. We investigate the consequences of their omission, examining their claim to a place on grounds of convenience, and asking whether their absence is an obstacle to the theory’s ability to represent ordered pairs or to support the arithmetization of analysis or the development of the theory of cardinals and ordinals.


Author(s):  
Ernest Schimmerling
Keyword(s):  

Author(s):  
Daniel W. Cunningham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document