A partial model for Quine's “New foundations”

1954 ◽  
Vol 19 (3) ◽  
pp. 197-200 ◽  
Author(s):  
Václav Edvard Beneš

1. In this paper we construct a model for part of the system NF of [4]. Specifically, we define a relation R of natural numbers such that the R-relativiseds of all the axioms except P9 of Hailperin's finitization [2] of NF become theorems of say Zermelo set theory. We start with an informal explanation of the model.2. Scrutiny of P1-P8 of [2] suggests that a model for these axioms might be constructed by so to speak starting with a universe that contained a “universe set” and a “cardinal 1”, and passing to its closure under the operations implicit in P1-P7, viz., the Boolean, the domain, the direct product, the converse, and the mixtures of product and inverse operations represented by P3 and P4. To obtain such closure we must find a way of representing the operations that involve ordered pairs and triples.We take as universe of the model the set of natural numbers ω; we let 0 represent the “universe set” and 1 represent “cardinal 1”. Then, in order to be able to refer in the model to the unordered pair of two sets, we determine all representatives of unordered pairs in advance by assigning them the even numbers in unique fashion (see d3 and d25); we can now define the operations that involve ordered pairs and triples, and obtain closure under them using the odd numbers. It remains to weed out, as in d26, the unnecessary sets so as to satisfy the axiom of extensionality.

1995 ◽  
Vol 60 (1) ◽  
pp. 178-190 ◽  
Author(s):  
M. Randall Holmes

AbstractAn ω-model (a model in which all natural numbers are standard) of the predicative fragment of Quine's set theory “New Foundations” (NF) is constructed. Marcel Crabbé has shown that a theory NFI extending predicative NF is consistent, and the model constructed is actually a model of NFI as well. The construction follows the construction of ω-models of NFU (NF with urelements) by R. B. Jensen, and, like the construction of Jensen for NFU, it can be used to construct α-models for any ordinal α. The construction proceeds via a model of a type theory of a peculiar kind; we first discuss such “tangled type theories” in general, exhibiting a “tangled type theory” (and also an extension of Zermelo set theory with Δ0 comprehension) which is equiconsistent with NF (for which the consistency problem seems no easier than the corresponding problem for NF (still open)), and pointing out that “tangled type theory with urelements” has a quite natural interpretation, which seems to provide an explanation for the more natural behaviour of NFU relative to the other set theories of this kind, and can be seen anachronistically as underlying Jensen's consistency proof for NFU.


1965 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gaisi Takeuti

In this paper, by a function of ordinals we understand a function which is defined for all ordinals and each of whose value is an ordinal. In [7] (also cf. [8] or [9]) we defined recursive functions and predicates of ordinals, following Kleene's definition on natural numbers. A predicate will be called arithmetical, if it is obtained from a recursive predicate by prefixing a sequence of alternating quantifiers. A function will be called arithmetical, if its representing predicate is arithmetical.The cardinals are identified with those ordinals a which have larger power than all smaller ordinals than a. For any given ordinal a, we denote by the cardinal of a and by 2a the cardinal which is of the same power as the power set of a. Let χ be the function such that χ(a) is the least cardinal which is greater than a.Now there are functions of ordinals such that they are easily defined in set theory, but it seems impossible to define them as arithmetical ones; χ is such a function. If we define χ in making use of only the language on ordinals, it seems necessary to use the notion of all the functions from ordinals, e.g., as in [6].


1999 ◽  
Vol 9 (5) ◽  
pp. 545-567 ◽  
Author(s):  
LAWRENCE C. PAULSON

A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard Zermelo–Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel's, but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered, as well as final coalgebras defined with respect to parameters. The disjoint sum construction is replaced by a smoother treatment of urelements that simplifies many of the derivations.The theory facilitates machine implementation of recursive definitions by letting both inductive and coinductive definitions be represented as fixed points. It has already been applied to the theorem prover Isabelle (Paulson, 1994).


Author(s):  
Colin McLarty

A ‘category’, in the mathematical sense, is a universe of structures and transformations. Category theory treats such a universe simply in terms of the network of transformations. For example, categorical set theory deals with the universe of sets and functions without saying what is in any set, or what any function ‘does to’ anything in its domain; it only talks about the patterns of functions that occur between sets. This stress on patterns of functions originally served to clarify certain working techniques in topology. Grothendieck extended those techniques to number theory, in part by defining a kind of category which could itself represent a space. He called such a category a ‘topos’. It turned out that a topos could also be seen as a category rich enough to do all the usual constructions of set-theoretic mathematics, but that may get very different results from standard set theory.


1946 ◽  
Vol 11 (3) ◽  
pp. 71-72 ◽  
Author(s):  
W. V. Quine

In a previous note I showed a new way to define the ordered pair. I made use of the notations ‘Nn’ (for class of natural numbers) and ‘Sv’ (for successor of v), remarking that they are readily defined without appeal to ordered pairs or relations. Adopting the auxiliary abbreviation: I defined the ordered pair thus:


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


Sign in / Sign up

Export Citation Format

Share Document