Perturbations of Multipliers of Systems of Periodic Ordinary Differential Equations

2011 ◽  
Vol 3 (5) ◽  
pp. 562-571
Author(s):  
Leonid Berezansky ◽  
Michael Gil’ ◽  
Liora Troib

AbstractThe paper deals with periodic systems of ordinary differential equations (ODEs). A new approach to the investigation of variations of multipliers under perturbations is suggested. It enables us to establish explicit conditions for the stability and instability of perturbed systems.

2020 ◽  
Vol 13 (06) ◽  
pp. 2050051
Author(s):  
Zhinan Xia ◽  
Qianlian Wu ◽  
Dingjiang Wang

In this paper, we establish some criteria for the stability of trivial solution of population growth models with impulsive perturbations. The working tools are based on the theory of generalized ordinary differential equations. Here, the conditions concerning the functions are more general than the classical ones.


1968 ◽  
Vol 20 ◽  
pp. 720-726
Author(s):  
T. G. Hallam ◽  
V. Komkov

The stability of the solutions of an ordinary differential equation will be discussed here. The purpose of this note is to compare the stability results which are valid with respect to a compact set and the stability results valid with respect to an unbounded set. The stability of sets is a generalization of stability in the sense of Liapunov and has been discussed by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 10).


1972 ◽  
Vol 47 ◽  
pp. 111-144 ◽  
Author(s):  
Yoshio Miyahara

The stability of the systems given by ordinary differential equations or functional-differential equations has been studied by many mathematicians. The most powerful tool in this field seems to be the Liapunov’s second method (see, for example [6]).


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lee Ken Yap ◽  
Fudziah Ismail ◽  
Norazak Senu

The block hybrid collocation method with two off-step points is proposed for the direct solution of general third order ordinary differential equations. Both the main and additional methods are derived via interpolation and collocation of the basic polynomial. These methods are applied in block form to provide the approximation at five points concurrently. The stability properties of the block method are investigated. Some numerical examples are tested to illustrate the efficiency of the method. The block hybrid collocation method is also implemented to solve the nonlinear Genesio equation and the problem in thin film flow.


Sign in / Sign up

Export Citation Format

Share Document