Numerical Simulation of Glottal Flow in Interaction with Self Oscillating Vocal Folds: Comparison of Finite Element Approximation with a Simplified Model

2012 ◽  
Vol 12 (3) ◽  
pp. 789-806 ◽  
Author(s):  
P. Sváček ◽  
J. Horáček

AbstractIn this paper the numerical method for solution of an aeroelastic model describing the interactions of air flow with vocal folds is described. The flow is modelled by the incompressible Navier-Stokes equations spatially discretized with the aid of the stabilized finite element method. The motion of the computational domain is treated with the aid of the Arbitrary Lagrangian Eulerian method. The structure dynamics is replaced by a mechanically equivalent system with the two degrees of freedom governed by a system of ordinary differential equations and discretized in time with the aid of an implicit multistep method and strongly coupled with the flow model. The influence of inlet/outlet boundary conditions is studied and the numerical analysis is performed and compared to the related results from literature.

Author(s):  
Jaromír Horáček ◽  
Petr Sváček

Flexibly supported two-degrees of freedom (2-DOF) airfoil in two-dimensional (2D) incompressible viscous turbulent flow subjected to a gust (sudden change of flow conditions) is considered. The structure vibration is described by two nonlinear ordinary differential equations of motion for large vibration amplitudes. The flow is modeled by Reynolds averaged Navier-Stokes equations (RANS) and by k–ω turbulence model. The numerical simulation consists of the finite element (FE) solution of the RANS equations and the equations for the turbulent viscosity. This is coupled with the equations of motion for the airfoil by a strong coupling procedure. The time dependent computational domain and a moving grid are taken into account with the aid of the arbitrary Lagrangian-Eulerian formulation. In order to avoid spurious numerical oscillations, the SUPG and div-div stabilizations are applied. The solution of the ordinary differential equations is carried out by the Runge-Kutta method. The resulting nonlinear discrete algebraic systems are solved by the Oseen iterative process. The aeroelastic response to a sudden gust is numerically analyzed with the aid of the developed FE code. The gust responses exhibit similar oscillations as those found in literature.


2014 ◽  
Vol 17 (1) ◽  
pp. 146-188 ◽  
Author(s):  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Petr Sváček

AbstractThe subject of the paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes. The airfoil with three degrees of freedom performs rotation around an elastic axis, oscillations in the vertical direction and rotation of a flap. The numerical simulation consists of the finite element solution of the Reynolds averaged Navier-Stokes equations combined with Spalart-Allmaras or κ–ω turbulence models, coupled with a system of nonlinear ordinary differential equations describing the airfoil motion with consideration of large amplitudes. The time-dependent computational domain and approximation on a moving grid are treated by the Arbitrary Lagrangian-Eulerian formulation of the flow equations. Due to large values of the involved Reynolds numbers an application of a suitable stabilization of the finite element discretization is employed. The developed method is used for the computation of flow-induced oscillations of the airfoil near the flutter instability, when the displacements of the airfoil are large, up to ±40 degrees in rotation. The paper contains the comparison of the numerical results obtained by both turbulence models.


2004 ◽  
Vol 14 (04) ◽  
pp. 603-618 ◽  
Author(s):  
ADRIAN DUNCA ◽  
VOLKER JOHN

This paper analyzes finite element approximations of space averaged flow fields which are given by filtering, i.e. averaging in space, the solution of the steady state Stokes and Navier–Stokes equations with a differential filter. It is shown that [Formula: see text], the error of the filtered velocity [Formula: see text] and the filtered finite element approximation of the velocity [Formula: see text], converges under certain conditions of higher order than [Formula: see text], the error of the velocity and its finite element approximation. It is also proved that this statement stays true if the L2-error of finite element approximations of [Formula: see text] and [Formula: see text] is considered. Numerical tests in two and three space dimensions support the analytical results.


Author(s):  
Jaromi´r Hora´cˇek ◽  
Miloslav Feistauer ◽  
Petr Sva´cˇek

The contribution deals with the numerical simulation of the flutter of an airfoil with three degrees of freedom (3-DOF) for rotation around an elastic axis, oscillation in the vertical direction and rotation of a flap. The finite element (FE) solution of two-dimensional (2-D) incompressible Navier-Stokes equations is coupled with a system of nonlinear ordinary differential equations describing the airfoil vibrations with large amplitudes taking into account the nonlinear mass matrix. The time-dependent computational domain and a moving grid are treated by the Arbitrary Lagrangian-Eulerian (ALE) method and a suitable stabilization of the FE discretization is applied. The developed method was successfully tested by the classical flutter computation of the critical flutter velocity using NASTRAN program considering the linear model of vibrations and the double-lattice aerodynamic theory. The method was applied to the numerical simulations of the post flutter regime in time domain showing Limit Cycle Oscillations (LCO) due to nonlinearities of the flow model and vibrations with large amplitudes. Numerical experiments were performed for the airfoil NACA 0012 respecting the effect of the air space between the flap and the main airfoil.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1240-1271 ◽  
Author(s):  
Camilo Andrés Bayona Roa ◽  
Joan Baiges ◽  
R Codina

Purpose – The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings – Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value – A complete investigation of the stabilized formulation of the compressible problem is addressed.


Sign in / Sign up

Export Citation Format

Share Document