scholarly journals A Compact Third-Order Gas-Kinetic Scheme for Compressible Euler and Navier-Stokes Equations

2015 ◽  
Vol 18 (4) ◽  
pp. 985-1011 ◽  
Author(s):  
Liang Pan ◽  
Kun Xu

AbstractIn this paper, a compact third-order gas-kinetic scheme is proposed for the compressible Euler and Navier-Stokes equations. The main reason for the feasibility to develop such a high-order scheme with compact stencil, which involves only neighboring cells, is due to the use of a high-order gas evolution model. Besides the evaluation of the time-dependent flux function across a cell interface, the high-order gas evolution model also provides an accurate time-dependent solution of the flow variables at a cell interface. Therefore, the current scheme not only updates the cell averaged conservative flow variables inside each control volume, but also tracks the flow variables at the cell interface at the next time level. As a result, with both cell averaged and cell interface values, the high-order reconstruction in the current scheme can be done compactly. Different from using a weak formulation for high-order accuracy in the Discontinuous Galerkin method, the current scheme is based on the strong solution, where the flow evolution starting from a piecewise discontinuous high-order initial data is precisely followed. The cell interface time-dependent flow variables can be used for the initial data reconstruction at the beginning of next time step. Even with compact stencil, the current scheme has third-order accuracy in the smooth flow regions, and has favorable shock capturing property in the discontinuous regions. It can be faithfully used from the incompressible limit to the hypersonic flow computations, and many test cases are used to validate the current scheme. In comparison with many other high-order schemes, the current method avoids the use of Gaussian points for the flux evaluation along the cell interface and the multi-stage Runge-Kutta time stepping technique. Due to its multidimensional property of including both derivatives of flow variables in the normal and tangential directions of a cell interface, the viscous flow solution, especially those with vortex structure, can be accurately captured. With the same stencil of a second order scheme, numerical tests demonstrate that the current scheme is as robust as well-developed second-order shock capturing schemes, but provides more accurate numerical solutions than the second order counterparts.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1170 ◽  
Author(s):  
Kaleemullah Bhatti ◽  
Abdul Majeed Siddiqui ◽  
Zarqa Bano

Slow velocity fluid flow problems in small diameter channels have many important applications in science and industry. Many researchers have modeled the flow through renal tubule, hollow fiber dialyzer and flat plate dialyzer using Navier Stokes equations with suitable simplifying assumptions and boundary conditions. The aim of this article is to investigate the hydrodynamical aspects of steady, axisymmetric and slow flow of a general second-order Rivlin-Ericksen fluid in a porous-walled circular tube with constant wall permeability. The governing compatibility equation have been derived and solved analytically for the stream function by applying Langlois recursive approach for slow viscoelastic flows. Analytical expressions for velocity components, pressure, volume flow rate, fractional reabsorption, wall shear stress and stream function have been obtained correct to third order. The effects of wall Reynolds number and certain non-Newtonian parameters have been studied and presented graphically. The obtained analytical expressions are in agreement with the existing solutions in literature if non-Newtonian parameters approach to zero. The solutions obtained in this article may be considered as a generalization to the existing work. The results indicate that there is a significant dependence of the flow variables on the wall Reynolds number and non-Newtonian parameters.


2014 ◽  
Vol 15 (4) ◽  
pp. 911-943 ◽  
Author(s):  
Na Liu ◽  
Huazhong Tang

AbstractThis paper develops a high-order accurate gas-kinetic scheme in the framework of the finite volume method for the one- and two-dimensional flow simulations, which is an extension of the third-order accurate gas-kinetic scheme [Q.B. Li, K. Xu, and S. Fu, J. Comput. Phys., 229(2010), 6715-6731] and the second-order accurate gas-kinetic scheme [K. Xu, J. Comput. Phys., 171(2001), 289-335]. It is formed by two parts: quartic polynomial reconstruction of the macroscopic variables and fourth-order accurate flux evolution. The first part reconstructs a piecewise cell-center based quartic polynomial and a cell-vertex based quartic polynomial according to the “initial” cell average approximation of macroscopic variables to recover locally the non-equilibrium and equilibrium single particle velocity distribution functions around the cell interface. It is in view of the fact that all macroscopic variables become moments of a single particle velocity distribution function in the gas-kinetic theory. The generalized moment limiter is employed there to suppress the possible numerical oscillation. In the second part, the macroscopic flux at the cell interface is evolved in fourth-order accuracy by means of the simple particle transport mechanism in the microscopic level, i.e. free transport and the Bhatnagar-Gross-Krook (BGK) collisions. In other words, the fourth-order flux evolution is based on the solution (i.e. the particle velocity distribution function) of the BGK model for the Boltzmann equation. Several 1D and 2D test problems are numerically solved by using the proposed high-order accurate gas-kinetic scheme. By comparing with the exact solutions or the numerical solutions obtained the second-order or third-order accurate gas-kinetic scheme, the computations demonstrate that our scheme is effective and accurate for simulating invisid and viscous fluid flows, and the accuracy of the high-order GKS depends on the choice of the (numerical) collision time.


Sign in / Sign up

Export Citation Format

Share Document