High-Order Conservative Asymptotic-Preserving Schemes for Modeling Rarefied Gas Dynamical Flows with Boltzmann-BGK Equation

2015 ◽  
Vol 18 (4) ◽  
pp. 1012-1049 ◽  
Author(s):  
Manuel A. Diaz ◽  
Min-Hung Chen ◽  
Jaw-Yen Yang

AbstractHigh-order and conservative phase space direct solvers that preserve the Euler asymptotic limit of the Boltzmann-BGK equation for modelling rarefied gas flows are explored and studied. The approach is based on the conservative discrete ordinate method for velocity space by using Gauss Hermite or Simpsons quadrature rule and conservation of macroscopic properties are enforced on the BGK collision operator. High-order asymptotic-preserving time integration is adopted and the spatial evolution is performed by high-order schemes including a finite difference weighted essentially non-oscillatory method and correction procedure via reconstruction schemes. An artificial viscosity dissipative model is introduced into the Boltzmann-BGK equation when the correction procedure via reconstruction scheme is used. The effects of the discrete velocity conservative property and accuracy of high-order formulations of kinetic schemes based on BGK model methods are provided. Extensive comparative tests with one-dimensional and two-dimensional problems in rarefied gas flows have been carried out to validate and illustrate the schemes presented. Potentially advantageous schemes in terms of stable large time step allowed and higher-order of accuracy are suggested.

2020 ◽  
Vol 80 ◽  
pp. 1-12 ◽  
Author(s):  
C. Baranger ◽  
Y. Dauvois ◽  
G. Marois ◽  
J. Mathé ◽  
J. Mathiaud ◽  
...  

2021 ◽  
Vol 33 (5) ◽  
pp. 052006
Author(s):  
Hassan Akhlaghi ◽  
Ehsan Roohi ◽  
Abbas Daliri ◽  
Mohammad-Reza Soltani

2001 ◽  
Vol 19 (5) ◽  
pp. 563-569 ◽  
Author(s):  
J. Gumbel

Abstract. Meshes are commonly used as part of instruments for in situ atmospheric measurements. This study analyses the aerodynamic effect of meshes by means of wind tunnel experiments and numerical simulations. Based on the Direct Simulation Monte Carlo method, a simple mesh parameterisation is described and applied to a number of representative flow conditions. For open meshes freely exposed to the flow, substantial compression effects are found both upstream and downstream of the mesh. Meshes attached to close instrument structures, on the other hand, cause only minor flow disturbances. In an accompanying paper, the approach developed here is applied to the quantitative analysis of rocket-borne density measurements in the middle atmosphere.Key words. Atmospheric composition and structure (instruments and techniques; middle atmosphere – composition and chemistry)


2010 ◽  
Vol 39 (10) ◽  
pp. 2078-2089 ◽  
Author(s):  
T.J. Scanlon ◽  
E. Roohi ◽  
C. White ◽  
M. Darbandi ◽  
J.M. Reese

Vacuum ◽  
2019 ◽  
Vol 160 ◽  
pp. 114-122 ◽  
Author(s):  
Giorgos Tatsios ◽  
Dimitris Valougeorgis ◽  
Stefan K. Stefanov

Sign in / Sign up

Export Citation Format

Share Document