scholarly journals Numerical Simulation of Rarefied Gas Flows with Specified Heat Flux Boundary Conditions

2015 ◽  
Vol 17 (5) ◽  
pp. 1185-1200 ◽  
Author(s):  
Jianping Meng ◽  
Yonghao Zhang ◽  
Jason M. Reese

AbstractWe investigate unidirectional rarefied flows confined between two infinite parallel plates with specified heat flux boundary conditions. Both Couette and force-driven Poiseuille flows are considered. The flow behaviors are analyzed numerically by solving the Shakhov model of the Boltzmann equation. We find that a zero-heat-flux wall can significantly influence the flow behavior, including the velocity slip and temperature jump at the wall, especially for high-speed flows. The predicted bimodal-like temperature profile for force-driven flows cannot even be qualitatively captured by the Navier-Stokes-Fourier equations.

Author(s):  
Angelos G. Klothakis ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

During the past decade considerable efforts have been exerted for the simulation of rarefied gas flows in a wide range of applications, like the flow over suborbital vehicles, in microelectromechanical systems, etc. Such flows appear to be significantly different from those at the continuum regime, making the Navier-Stokes equations to fail without further amendment. In this study an in-house academic CFD solver, named Galatea, is modified appropriately to account for rarefied gases. The no-slip condition on solid walls is no longer valid, hence, velocity slip and temperature jump boundary conditions are applied instead. Additionally, a second-order accurate slip model has been incorporated, namely, this of Beskok and Karniadakis, increasing the accuracy in the same area but avoiding simultaneously the numerical difficulties, entailed by the computation of the second derivative of slip velocity when complex geometries and unstructured grids are coupled. The proposed solver is validated against rarefied laminar flow over a suborbital shuttle, designed by the Azim’UTBM team. The obtained results are compared with those extracted with the parallel open-source kernel SPARTA, which is based on the DSMC method. A satisfactory agreement is reported between the two methodologies, demonstrating the potential of the modified solver to simulate effectively such flows.


Sign in / Sign up

Export Citation Format

Share Document