Fast Solver for the Local Discontinuous Galerkin Discretization of the KdV Type Equations

2015 ◽  
Vol 17 (2) ◽  
pp. 424-457 ◽  
Author(s):  
Ruihan Guo ◽  
Yan Xu

AbstractIn this paper, we will develop a fast iterative solver for the system of linear equations arising from the local discontinuous Galerkin (LDG) spatial discretization and additive Runge-Kutta (ARK) time marching method for the KdV type equations. Being implicit in time, the severe time step , with the k-th order of the partial differential equations (PDEs)) restriction for explicit methods will be removed. The equations at the implicit time level are linear and we demonstrate an efficient, practical multigrid (MG) method for solving the equations. In particular, we numerically show the optimal or sub-optimal complexity of the MG solver and a two-level local mode analysis is used to analyze the convergence behavior of the MG method. Numerical results for one-dimensional, two-dimensional and three-dimensional cases are given to illustrate the efficiency and capability of the LDG method coupled with the multigrid method for solving the KdV type equations.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fengna Yan ◽  
Yan Xu

Abstract In this paper, we mainly study the error analysis of an unconditionally energy stable local discontinuous Galerkin (LDG) scheme for the Cahn–Hilliard equation with concentration-dependent mobility. The time discretization is based on the invariant energy quadratization (IEQ) method. The fully discrete scheme leads to a linear algebraic system to solve at each time step. The main difficulty in the error estimates is the lack of control on some jump terms at cell boundaries in the LDG discretization. Special treatments are needed for the initial condition and the non-constant mobility term of the Cahn–Hilliard equation. For the analysis of the non-constant mobility term, we take full advantage of the semi-implicit time-discrete method and bound some numerical variables in L ∞ L^{\infty} -norm by the mathematical induction method. The optimal error results are obtained for the fully discrete scheme.


2014 ◽  
Vol 15 (4) ◽  
pp. 1091-1107 ◽  
Author(s):  
Yinhua Xia ◽  
Yan Xu

AbstractIn this paper we develop a conservative local discontinuous Galerkin (LDG) method for the Schrödinger-Korteweg-de Vries (Sch-KdV) system, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Conservative quantities in the discrete version of the number of plasmons, energy of the oscillations and the number of particles are proved for the LDG scheme of the Sch-KdV system. Semi-implicit time discretization is adopted to relax the time step constraint from the high order spatial derivatives. Numerical results for accuracy tests of stationary traveling soliton, and the collision of solitons are shown. Numerical experiments illustrate the accuracy and capability of the method.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Meilan Qiu ◽  
Dewang Li ◽  
Yanyun Wu

Fractional partial differential equations with time-space fractional derivatives describe some important physical phenomena. For example, the subdiffusion equation (time order 0<α<1) is more suitable to describe the phenomena of charge carrier transport in amorphous semiconductors, nuclear magnetic resonance (NMR) diffusometry in percolative, Rouse, or reptation dynamics in polymeric systems, the diffusion of a scalar tracer in an array of convection rolls, or the dynamics of a bead in a polymeric network, and so on. However, the superdiffusion case (1<α<2) is more accurate to depict the special domains of rotating flows, collective slip diffusion on solid surfaces, layered velocity fields, Richardson turbulent diffusion, bulk-surface exchange controlled dynamics in porous glasses, the transport in micelle systems and heterogeneous rocks, quantum optics, single molecule spectroscopy, the transport in turbulent plasma, bacterial motion, and even for the flight of an albatross (for more physical applications of fractional sub-super diffusion equations, one can see Metzler and Klafter in 2000). In this work, we establish two fully discrete numerical schemes for solving a class of nonlinear time-space fractional subdiffusion/superdiffusion equations by using backward Euler difference 1<α<2 or second-order central difference 1<α<2/local discontinuous Galerkin finite element mixed method. By introducing the mathematical induction method, we show the concrete analysis for the stability and the convergence rate under the L2 norm of the two LDG schemes. In the end, we adopt several numerical experiments to validate the proposed model and demonstrate the features of the two numerical schemes, such as the optimal convergence rate in space direction is close to Ohk+1. The convergence rate in time direction can arrive at Oτ2−α when the fractional derivative is 0<α<1. If the fractional derivative parameter is 1<α<2 and we choose the relationship as h=C′τ (h denotes the space step size, C′ is a constant, and τ is the time step size), then the time convergence rate can reach to Oτ3−α. The experiment results illustrate that the proposed method is effective in solving nonlinear time-space fractional subdiffusion/superdiffusion equations.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1483-1486 ◽  
Author(s):  
HAI-QING SI ◽  
TONG-GUANG WANG ◽  
XIAO-YUN LUO

A fully implicit unfactored algorithm for three-dimensional Euler equations is developed and tested on multi-block curvilinear meshes. The convective terms are discretized using an upwind TVD scheme. The large sparse linear system generated at each implicit time step is solved by GMRES* method combined with the block incomplete lower-upper preconditioner. In order to reduce the memory requirements and the matrix-vector operation counts, an approximate method is used to derive the Jacobian matrix, which only costs half of the computational efforts of the exact Jacobian calculation. The comparison between the numerical results and the experimental data shows good agreement, which demonstrates that the implicit algorithm presented is effective and efficient.


2013 ◽  
Vol 13 (2) ◽  
pp. 386-410 ◽  
Author(s):  
Björn Sjögreen ◽  
Jeffrey W. Banks

AbstractWe consider multi-physics computations where the Navier-Stokes equations of compressible fluid flow on some parts of the computational domain are coupled to the equations of elasticity on other parts of the computational domain. The different subdomains are separated by well-defined interfaces. We consider time accurate computations resolving all time scales. For such computations, explicit time stepping is very efficient. We address the issue of discrete interface conditions between the two domains of different physics that do not lead to instability, or to a significant reduction of the stable time step size. Finding such interface conditions is non-trivial.We discretize the problem with high order centered difference approximations with summation by parts boundary closure. We derive L2 stable interface conditions for the linearized one dimensional discretized problem. Furthermore, we generalize the interface conditions to the full non-linear equations and numerically demonstrate their stable and accurate performance on a simple model problem. The energy stable interface conditions derived here through symmetrization of the equations contain the interface conditions derived through normal mode analysis by Banks and Sjögreen in [8] as a special case.


Sign in / Sign up

Export Citation Format

Share Document