scholarly journals Ground-level Particulate Sulphate and Gaseous Sulphur Dioxide Downwind of an Aluminium Smelter

2021 ◽  
Vol 21 ◽  
Author(s):  
Dane Blanchard ◽  
Julian Aherne
2000 ◽  
Vol 9 (2) ◽  
pp. 93-100 ◽  
Author(s):  
M. Andretta ◽  
A. Eleuteri ◽  
F. Fortezza ◽  
D. Manco ◽  
L. Mingozzi ◽  
...  

1998 ◽  
Vol 5 (5) ◽  
pp. 367-384 ◽  
Author(s):  
BT Boadway ◽  
J MacPhail ◽  
C Jacobson

This review of the evidence of the health effects of air pollutants focuses on research conducted in Ontario. Seven key Ontario studies are cited. These findings are highly significant for people living in the Great Lakes basin (and particularly the Windsor-Quebec corridor), where high levels of certain air pollutants (eg, ground-level ozone and ultra-fine particles) occur more frequently than in other parts of Canada. The issue is a serious one, requiring an integrated and comprehensive approach by many stakeholders, including the active involvement of organized medicine. It is important that the health effects of these air pollutants are understood. Governments must act to reduce emission levels through statue and regulation bolstered by noncompliance penalties.The findings of research have included the following: in a Toronto study, a 2% to 4% excess of respiratory deaths were attributable to pollutant levels; children living in rural Ontario communities with the highest levels of airborne acids were significantly more likely to report at least one episode of bronchitis, as well as to show decreases in lung function; and have been linked to increases in pollutants, emergency room visits and hospitalizations in Ontario.Every Ontarian is affected by air pollutants, although he or she may be unaware of the asymptomatic effects such as lung and bronchial inflammation. This health problem is preventable; while physicians know of the adverse health impacts of air pollution and they are concerned, individually they now focus on the treatment of symptoms. The major recommendations of the report are as follows:* Enactment of more stringent sulphur and nitrogen oxide emission limits, including a provincewide sulphur dioxide reduction of 75% from current cap levels, and the maximum allowable nitrogen oxides emission limits of 6000 tonnes annually from Ontario Hydro.* New transportation sector emission limits that should include California-level standards for light and heavy duty vehicles, reductions from off-road engines, an expanded vehicle inspection and maintenance program, and tougher standards for sulphur-in-fuel content.* Petitioning the United States Environmental Protection Agency administrator under Section 115 of the United States Clear Air Act to require reductions in the American emission of sulphur dioxide and nitrogen oxides, which damage the health of Canadian residents and their environment.* Physician advice to patients about the risks of smog exposure, physician support for more health effects research on air pollution, and physician promotion of the development of air pollution-related health education materials.The recommendations discussed in this paper will, if acted upon, lead to a significant reduction in the overall burden of illness from air pollutants, especially in children and the elderly. These recommendations have been selected from a review of recommendations made by various authorities, and are those that the OMA feels a particular responsibility to support.


2010 ◽  
Vol 10 (20) ◽  
pp. 10085-10092 ◽  
Author(s):  
H. Flentje ◽  
H. Claude ◽  
T. Elste ◽  
S. Gilge ◽  
U. Köhler ◽  
...  

Abstract. Volcanic emissions from the Eyjafjallajökull volcano eruption on the Southern fringe of Iceland in April 2010 were detected at the Global Atmosphere Watch (GAW) station Zugspitze/Hohenpeissenberg (Germany) by means of in-situ measurements, ozone sondes and ceilometers. Information from the German Meteorological Service (DWD) ceilometer network (Flentje et al., 2010) aided identifying the air mass origin. We discuss ground level in-situ measurements of sulphur dioxide (SO2), sulphuric acid (H2SO4) and particulate matter as well as ozone sonde profiles and column measurements of SO2 by a Brewer spectrometer. At Hohenpeissenberg, a number of reactive gases, e.g. carbon monoxide and nitrogen oxides, and particle properties, e.g. size distribution and ionic composition, were additionally measured during this period. Our results describe the arrival of the volcanic plume at Zugspitze and Hohenpeissenberg during 16 and 17 April 2010 and its residence in the planetary boundary layer (PBL) for several days thereafter. The ash plume was first seen in the ceilometer backscatter profiles at Hohenpeissenberg in about 6–7 km altitude. After entrainment into the PBL at noon of 17 April, largely enhanced values of sulphur dioxide, sulphuric acid and super-micron-particle number concentration were recorded at Zugspitze/Hohenpeissenberg till 21 April.


Author(s):  
Joseph M. Blum ◽  
Edward P. Gargiulo ◽  
J. R. Sawers

It is now well-known that chatter (Figure 1) is caused by vibration between the microtome arm and the diamond knife. It is usually observed as a cyclical variation in “optical” density of an electron micrograph due to sample thickness variations perpendicular to the cutting direction. This vibration might be induced by using too large a block face, too large a clearance angle, excessive cutting speed, non-uniform embedding medium or microtome vibration. Another prominent cause is environmental vibration caused by inadequate building construction. Microtomes should be installed on firm, solid floors. The best floors are thick, ground-level concrete pads poured over a sand bed and isolated from the building walls. Even when these precautions are followed, we recommend an additional isolation pad placed on the top of a sturdy table.


2001 ◽  
Vol 7 (7) ◽  
pp. 789-796 ◽  
Author(s):  
L. H. Ziska ◽  
O. Ghannoum ◽  
J. T. Baker ◽  
J. Conroy ◽  
J. A. Bunce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document