scholarly journals Knockdown of Dock7 <i>in vivo</i> specifically affects myelination by Schwann cells and increases myelin thickness in sciatic nerves without affecting axon thickness

2012 ◽  
Vol 02 (03) ◽  
pp. 210-216 ◽  
Author(s):  
Tomohiro Torii ◽  
Yuki Miyamoto ◽  
Motoshi Nagao ◽  
Naoko Onami ◽  
Hideki Tsumura ◽  
...  
2021 ◽  
Author(s):  
Gang Yin ◽  
Yaofa Lin ◽  
Peilin Wang ◽  
Jun Zhou ◽  
Haodong Lin

Abstract BackgroundAxonal regeneration following peripheral nerve injury largely depends on a favorable microenvironment. Schwann cells (SCs) play a crucial role in axonal regeneration by interacting with macrophages, but the mechanisms underlying macrophages recruitment and polarization remain unclear.MethodsThe total RNA of crushed sciatic nerves and intact contralateral nerves was extracted and used to RNA-sequencing (RNA-seq). The differentially expressed long noncoding RNA (lncRNA) and mRNAs were analyzed using bioinformatics analysis, and were verified using qPCR and western blot analysis. The putative role of lncRNA in nerve regeneration was analyzed in vitro and in vivo. Macrophage polarization phenotype was identified by assessing IL-10, Arg-1, and CD206.ResultsHere we identified an lncRNA, termed Axon Regeneration-Associated Transcript (lncARAT), upregulated in SCs and SCs-derived exosomes after crushed sciatic nerves (CSN). LncARAT contributed to axonal regeneration and improved motor functional recovery. Mechanistically, lncARAT epigenetically activated CCL2 expression by recruiting KMT2A to CCL2 promoter, which resulted in an increased H3K4 trimethylation and CCL2 transcription in SCs. CCL2 upregulation facilitated the infiltration of macrophages into the injured nerves. Meanwhile, lncARAT-enriched exosomes were released from SCs and incorporated into macrophages. Once in macrophage, lncARAT functioned as an endogenous sponge to adsorb miRNA-329-5p, resulting in an increased SOCS2 expression, which facilitated macrophage M2 polarization through a STAT1/6-dependent pathway, thus promoted axonal regeneration.ConclusionsLncARAT may serve as a promising therapeutic avenue for peripheral nerve repair.


2021 ◽  
Author(s):  
Gang Yin ◽  
Yaofa Lin ◽  
Peilin Wang ◽  
Jun Zhou ◽  
Haodong Lin

Abstract Background: Axonal regeneration following peripheral nerve injury largely depends on a favorable microenvironment. Schwann cells (SCs) play a crucial role in axonal regeneration by interacting with macrophages, but the mechanisms underlying macrophages recruitment and polarization remain unclear. Methods: The total RNA of crushed sciatic nerves and intact contralateral nerves was extracted and used to RNA-sequencing (RNA-seq). The differentially expressed long noncoding RNA (lncRNA) and mRNAs were analyzed using bioinformatics analysis, and were verified using qPCR and western blot analysis. The putative role of lncRNA in nerve regeneration was analyzed in vitro and in vivo. Macrophage polarization phenotype was identified by assessing IL-10, Arg-1, and CD206.Results: Here we identified an lncRNA, termed Axon Regeneration-Associated Transcript (lncARAT), upregulated in SCs and SCs-derived exosomes after crushed sciatic nerves (CSN). LncARAT contributed to axonal regeneration and improved motor functional recovery. Mechanistically, lncARAT epigenetically activated CCL2 expression by recruiting KMT2A to CCL2 promoter, which resulted in an increased H3K4 trimethylation and CCL2 transcription in SCs. CCL2 upregulation facilitated the infiltration of macrophages into the injured nerves. Meanwhile, lncARAT-enriched exosomes were released from SCs and incorporated into macrophages. Once in macrophage, lncARAT functioned as an endogenous sponge to adsorb miRNA-329-5p, resulting in an increased SOCS2 expression, which facilitated macrophage M2 polarization through a STAT1/6-dependent pathway, thus promoted axonal regeneration. Conclusions: LncARAT may serve as a promising therapeutic avenue for peripheral nerve repair.


1991 ◽  
Vol 114 (1) ◽  
pp. 140-143 ◽  
Author(s):  
Joanne Kelsch Daniloff
Keyword(s):  

1997 ◽  
Vol 110 (14) ◽  
pp. 1673-1682 ◽  
Author(s):  
J.G. Stone ◽  
L.I. Spirling ◽  
M.K. Richardson

The peptide endothelin 3 (EDN3) is essential for normal neural crest development in vivo, and is a potent mitogen for quail truncal crest cells in vitro. It is not known which subpopulations of crest cells are targets for this response, although it has been suggested that EDN3 is selective for melanoblasts. In the absence of cell markers for different precursor types in the quail crest, we have characterised EDN3-responsive cell types using in vitro colony assay and clonal analysis. Colonies were analysed for the presence of Schwann cells, melanocytes, adrenergic cells or sensory-like cells. We provide for the first time a description of the temporal pattern of lineage segregation in neural crest cultures. In the absence of exogenous EDN3, crest cells proliferate and then differentiate. Colony assay indicates that in these differentiated cultures few undifferentiated precursors remain and there is a low replating efficiency. By contrast, in the presence of 100 ng/ml EDN3 differentiation is inhibited and most of the cells maintain the ability to give rise to mixed colonies and clones containing neural crest derivatives. A high replating efficiency is maintained. In secondary culture there was a progressive decline in the number of cell types per colony in control medium. This loss of developmental potential was not seen when exogenous EDN3 was present. Cell type analysis suggests two novel cellular targets for EDN3 under these conditions. Contrary to expectations, one is a multipotent precursor whose descendants include melanocytes, adrenergic cells and sensory-like cells; the other can give rise to melanocytes and Schwann cells. Our data do not support previous claims that the action of EDN3 in neural crest culture is selective for cells in the melanocyte lineage.


2006 ◽  
Vol 198 (2) ◽  
pp. 438-449 ◽  
Author(s):  
Jorge B. Aquino ◽  
Jens Hjerling-Leffler ◽  
Martin Koltzenburg ◽  
Thomas Edlund ◽  
Marcelo J. Villar ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (72) ◽  
pp. 41181-41191 ◽  
Author(s):  
Tianmei Qian ◽  
Pan Wang ◽  
Qianqian Chen ◽  
Sheng Yi ◽  
Qianyan Liu ◽  
...  

Schwann cells (SCs), fibroblasts and macrophages are the main cells in the peripheral nerve stumps.


Author(s):  
Rahul Kasukurthi ◽  
Terence M. Myckatyn
Keyword(s):  

Author(s):  
Zachary Fralish ◽  
Ethan M. Lotz ◽  
Taylor Chavez ◽  
Alastair Khodabukus ◽  
Nenad Bursac

The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.


Author(s):  
Alexander Schulz ◽  
Christian Walther ◽  
Helen Morrison ◽  
Reinhard Bauer

Sign in / Sign up

Export Citation Format

Share Document