myelin thickness
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ana Palma ◽  
Juan Carlos Chara ◽  
Amaia Otxoa-Amezaga ◽  
Anna Planas ◽  
Carlos Matute ◽  
...  

Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties (Mei et al., 2014). Clemastine penetrates the blood brain barrier efficiently and promotes remyelination in different animal models of neurodegeneration including multiple sclerosis, ischemia and Alzheimer's disease. However, its role in myelination during development is unknown. We showed that clemastine treatment during development increase oligodendrocyte differentiation in both white and gray matter. However, despite the increase in the number of oligodendrocytes, conduction velocity of myelinated fibers of corpus callosum decreased in clemastine-treated mice. Confocal and electron microscopy showed a reduction in the number of myelinated axons and nodes of Ranvier and a reduction of myelin thickness in corpus callosum. To understand the mechanisms leading to myelin formation impairment in the presence of an excess of myelinating oligodendrocytes, we focused on microglial cells which also express muscarinic M1 receptors. Importantly, the population of CD11c+ microglia cells, necessary for myelination, as well as the levels of insulin growth factor-1 decrease in clemastine-treated mice. Altogether, these data suggest that clemastine impact on myelin development is more complex than previously thought and could be dependent on microglia-oligodendrocyte crosstalk. Further studies are needed to clarify the role of microglia cells on developmental myelination.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 827
Author(s):  
Aline C. Giardini ◽  
Bianca G. Evangelista ◽  
Morena B. Sant’Anna ◽  
Barbara B. Martins ◽  
Carmen L. P. Lancellotti ◽  
...  

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.


Author(s):  
Maria Siemionow ◽  
Marcin Michal Strojny ◽  
Katarzyna Kozlowska ◽  
Sonia Brodowska ◽  
Wiktoria Grau-Kazmierczak ◽  
...  

AbstractVarious therapeutic methods have been suggested to enhance nerve regeneration. In this study, we propose a novel approach for enhancement of nerve gap regeneration by applying human epineural conduit (hEC) supported with human mesenchymal stem cells (hMSC), as an alternative to autograft repair. Restoration of 20 mm sciatic nerve defect with hEC created from human sciatic nerve supported with hMSC was tested in 4 experimental groups (n = 6 each) in the athymic nude rat model (Crl:NIH-Foxn1rnu): 1 - No repair control, 2 - Autograft control, 3 - Matched diameter hEC filled with 1 mL saline, 4 - Matched diameter hEC supported with 3 × 106 hMSC. Assessments included: functional tests: toe-spread and pinprick, regeneration assessment by immunofluorescence staining: HLA-1, HLA-DR, NGF, GFAP, Laminin B, S-100, VEGF, vWF and PKH26 labeling; histomorphometric analysis of myelin thickness, axonal density, fiber diameter and myelinated nerve fibers percentage; Gastrocnemius Muscle Index (GMI) and muscle fiber area ratio. Best sensory and motor function recovery, as well as GMI and muscle fiber area ratio, were observed in the autograft group, and were comparable to the hEC with hMSC group (p = 0.038). Significant improvements of myelin thickness (p = 0.003), fiber diameter (p = 0.0296), and percentage of myelinated fibers (p < 0.0001) were detected in hEC group supported with hMSC compared to hEC with saline controls. At 12-weeks after nerve gap repair, hEC combined with hMSC revealed increased expression of neurotrophic and proangiogenic factors, which corresponded with improvement of function comparable with the autograft control. Application of our novel hEC supported with hMSC provides a potential alternative to the autograft nerve repair. Graphical Abstract


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexandra Lucas ◽  
Shani Poleg ◽  
Achim Klug ◽  
Elizabeth A. McCullagh

Auditory symptoms are one of the most frequent sensory issues described in people with Fragile X Syndrome (FXS), the most common genetic form of intellectual disability. However, the mechanisms that lead to these symptoms are under explored. In this study, we examined whether there are defects in myelination in the auditory brainstem circuitry. Specifically, we studied myelinated fibers that terminate in the Calyx of Held, which encode temporally precise sound arrival time, and are some of the most heavily myelinated axons in the brain. We measured anatomical myelination characteristics using coherent anti-stokes Raman spectroscopy (CARS) and electron microscopy (EM) in a FXS mouse model in the medial nucleus of the trapezoid body (MNTB) where the Calyx of Held synapses. We measured number of mature oligodendrocytes (OL) and oligodendrocyte precursor cells (OPCs) to determine if changes in myelination were due to changes in the number of myelinating or immature glial cells. The two microscopy techniques (EM and CARS) showed a decrease in fiber diameter in FXS mice. Additionally, EM results indicated reductions in myelin thickness and axon diameter, and an increase in g-ratio, a measure of structural and functional myelination. Lastly, we showed an increase in both OL and OPCs in MNTB sections of FXS mice suggesting that the myelination phenotype is not due to an overall decrease in number of myelinating OLs. This is the first study to show that a myelination defects in the auditory brainstem that may underly auditory phenotypes in FXS.


2021 ◽  
Author(s):  
Yunhong Bai ◽  
Caroline Treins ◽  
Vera G Volpi ◽  
cristina scapin ◽  
Cinzia Ferri ◽  
...  

Charcot Marie Tooth diseases type 1A (CMT1A), caused by duplication of Peripheral Myelin Protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene are the two most common forms of demyelinating CMT (CMT1) and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modeled by MpzR98C/+ mice that also show ER-stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER-stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER-stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analyzed by behavioral, neurophysiological, morphological and biochemical measures. Both MpzR98C/+ and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild type values. Taken together our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in Amyotrophic Lateral Sclerosis and Multiple Sclerosis animal models, these data demonstrate its potential in managing UPR and ER-stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases.


2021 ◽  
Vol 11 (10) ◽  
pp. 1353
Author(s):  
Eliana Lousada ◽  
Mathieu Boudreau ◽  
Julien Cohen-Adad ◽  
Brahim Nait Oumesmar ◽  
Eric Burguière ◽  
...  

Pathological repetitive behaviours are a common feature of various neuropsychiatric disorders, including compulsions in obsessive–compulsive disorder or tics in Gilles de la Tourette syndrome. Clinical research suggests that compulsive-like symptoms are related to associative cortico-striatal dysfunctions, and tic-like symptoms to sensorimotor cortico-striatal dysfunctions. The Sapap3 knockout mouse (Sapap3-KO), the current reference model to study such repetitive behaviours, presents both associative as well as sensorimotor cortico-striatal dysfunctions. Previous findings point to deficits in both macro-, as well as micro-circuitry, both of which can be affected by neuronal structural changes. However, to date, structural connectivity has not been analysed. Hence, in the present study, we conducted a comprehensive structural characterisation of both associative and sensorimotor striatum as well as major cortical areas connecting onto these regions. Besides a thorough immunofluorescence study on oligodendrocytes, we applied AxonDeepSeg, an open source software, to automatically segment and characterise myelin thickness and axon area. We found that axon calibre, the main contributor to changes in conduction speed, is specifically reduced in the associative striatum of the Sapap3-KO mouse; myelination per se seems unaffected in associative and sensorimotor cortico-striatal circuits.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jun Ju ◽  
Xiuyan Yang ◽  
Jian Jiang ◽  
Dilong Wang ◽  
Yumeng Zhang ◽  
...  

Myelin abnormalities have been observed in autism spectrum disorder (ASD). In this study, we seek to discover myelin-related changes in the striatum, a key brain region responsible for core ASD features, using the 16p11.2 deletion (16p11.2±) mouse model of ASD. We found downregulated expression of multiple myelin genes and decreased myelin thickness in the striatum of 16p11.2± mice versus wild type controls. Moreover, given that myelin is the main reservoir of brain lipids and that increasing evidence has linked dysregulation of lipid metabolism to ASD, we performed lipidomic analysis and discovered decreased levels of certain species of sphingomyelin, hexosyl ceramide and their common precursor, ceramide, in 16p11.2± striatum, all of which are major myelin components. We further identified lack of ceramide synthase 2 as the possible reason behind the decrease in these lipid species. Taken together, our data suggest a role for myelin and myelin lipids in ASD development.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0248323
Author(s):  
Alison L. Wong ◽  
Nicholas Hricz ◽  
Harsha Malapati ◽  
Nicholas von Guionneau ◽  
Michael Wong ◽  
...  

Background Manual axon histomorphometry (AH) is time- and resource-intensive, which has inspired many attempts at automation. However, there has been little investigation on implementation of automated programs for widespread use. Ideally such a program should be able to perform AH across imaging modalities and nerve states. AxonDeepSeg (ADS) is an open source deep learning program that has previously been validated in electron microscopy. We evaluated the robustness of ADS for peripheral nerve axonal histomorphometry in light micrographs prepared using two different methods. Methods Axon histomorphometry using ADS and manual analysis (gold-standard) was performed on light micrographs of naïve or regenerating rat median nerve cross-sections prepared with either toluidine-resin or osmium-paraffin embedding protocols. The parameters of interest included axon count, axon diameter, myelin thickness, and g-ratio. Results Manual and automatic ADS axon counts demonstrated good agreement in naïve nerves and moderate agreement on regenerating nerves. There were small but consistent differences in measured axon diameter, myelin thickness and g-ratio; however, absolute differences were small. Both methods appropriately identified differences between naïve and regenerating nerves. ADS was faster than manual axon analysis. Conclusions Without any algorithm retraining, ADS was able to appropriately identify critical differences between naïve and regenerating nerves and work with different sample preparation methods of peripheral nerve light micrographs. While there were differences between absolute values between manual and ADS, ADS performed consistently and required much less time. ADS is an accessible and robust tool for AH that can provide consistent analysis across protocols and nerve states.


2021 ◽  
Vol 18 (9) ◽  
pp. 1895-1901
Author(s):  
Qingbin Shi ◽  
Xiuying Cai ◽  
Changchun Li ◽  
Zhen Wang ◽  
Xingle Lv

Purpose: Conjugated linoleic acid (CLA) has been suggested to be necessary for human health, but there is limited research regarding its effect on neuropathic pain (NP). Here, we aim to investigate the potential effect of CLA administration on NP development and nerve recovery. Methods: Forty mice were divided into four equal groups randomly. The mice in control group underwent a sham operation to achieve a unilateral sciatic nerve cut. Other groups were subjected to partial sciatic nerve ligation (PSNL) surgery followed by 4 weeks of CLA treatment. Behavioral tests were performed shortly before mice were sacrificed. Blood, sciatic nerve and spinal cord tissues were collected after sacrifice. Electron microscopy was performed to determine myelin thickness and calculate myelin thickness/axon diameter ratio. Results: Mice that received daily oral CLA treatment for 4 weeks after PSNL surgery showed less mechanical and thermal allodynia than mice in PSNL surgery alone group. Behavioral tests showed that CLA treatment was associated with marked increases in both nerve conduction velocity (NCV) and force of gastrocnemius contraction. In addition, CLA reduced the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), sciatic myeloperoxidase (MPO) activity, and activating transcription factor-3 (ATF-3) expression. CLA also restored mitochondrial manganese superoxide dismutase (MnSOD) activity which was decreased in the sciatic nerves and spinal cords of the PSNL surgery group. Regeneration of myelins and axons in nerve fibers in CLA group was faster and more complete than that in the vehicle group. Conclusion: The current study demonstrates that CLA effectively attenuates NP and significantly inhibits neuro-inflammation and oxidative stress. This treatment improves sciatic nerve form and function after injury, suggesting that it can attenuate NP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana G. Hernandez-Reynoso ◽  
Dora L. Corona-Quintanilla ◽  
Kenia López-García ◽  
Ana A. Horbovetz ◽  
Francisco Castelán ◽  
...  

AbstractPelvic floor muscle stretch injury during pregnancy and birth is associated with the incidence of stress urinary incontinence (SUI), a condition that affects 30–60% of the female population and is characterized by involuntary urine leakage during physical activity, further exacerbated by aging. Aging and multiparous rabbits suffer pelvic nerve and muscle damage, resulting in alterations in pelvic floor muscular contraction and low urethral pressure, resembling SUI. However, the extent of nerve injury is not fully understood. Here, we used electron microscopy analysis of pelvic and perineal nerves in multiparous rabbits to describe the extent of stretch nerve injury based on axon count, axon size, myelin-to-axon ratio, and elliptical ratio. Compared to young nulliparous controls, mid-age multiparous animals showed an increase in the density of unmyelinated axons and in myelin thickness in both nerves, albeit more significant in the bulbospongiosus nerve. This revealed a partial but sustained damage to these nerves, and the presence of some regenerated axons. Additionally, we tested whether electrical stimulation of the bulbospongiosus nerve would induce muscle contraction and urethral closure. Using a miniature wireless stimulator implanted on this perineal nerve in young nulliparous and middle age multiparous female rabbits, we confirmed that these partially damaged nerves can be acutely depolarized, either at low (2–5 Hz) or medium (10–20 Hz) frequencies, to induce a proportional increase in urethral pressure. Evaluation of micturition volume in the mid-age multiparous animals after perineal nerve stimulation, effectively reversed a baseline deficit, increasing it 2-fold (p = 0.02). These results support the notion that selective neuromodulation of pelvic floor muscles might serve as a potential treatment for SUI.


Sign in / Sign up

Export Citation Format

Share Document