scholarly journals The Harmonic Functions on a Complete Asymptotic Flat Riemannian Manifold

2011 ◽  
Vol 01 (02) ◽  
pp. 5-8
Author(s):  
Huashui Zhan
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Li ◽  
Shuxiang Feng ◽  
Peibiao Zhao

AbstractIn this paper, we establish a finiteness theorem for $L^{p}$ L p harmonic 1-forms on a locally conformally flat Riemannian manifold under the assumptions on the Schrödinger operators involving the squared norm of the traceless Ricci form. This result can be regarded as a generalization of Han’s result on $L^{2}$ L 2 harmonic 1-forms.


2001 ◽  
Vol 162 ◽  
pp. 149-167
Author(s):  
Yong Hah Lee

In this paper, we prove that if a complete Riemannian manifold M has finitely many ends, each of which is a Harnack end, then the set of all energy finite bounded A-harmonic functions on M is one to one corresponding to Rl, where A is a nonlinear elliptic operator of type p on M and l is the number of p-nonparabolic ends of M. We also prove that if a complete Riemannian manifold M is roughly isometric to a complete Riemannian manifold with finitely many ends, each of which satisfies the volume doubling condition, the Poincaré inequality and the finite covering condition near infinity, then the set of all energy finite bounded A-harmonic functions on M is finite dimensional. This result generalizes those of Yau, of Donnelly, of Grigor’yan, of Li and Tam, of Holopainen, and of Kim and the present author, but with a barrier argument at infinity that the peculiarity of nonlinearity demands.


2011 ◽  
Vol 08 (07) ◽  
pp. 1593-1610 ◽  
Author(s):  
ESMAEIL PEYGHAN ◽  
AKBAR TAYEBI

In this paper, we introduce a Riemannian metric [Formula: see text] and a family of framed f-structures on the slit tangent bundle [Formula: see text] of a Finsler manifold Fn = (M, F). Then we prove that there exists an almost contact structure on the tangent bundle, when this structure is restricted to the Finslerian indicatrix. We show that this structure is Sasakian if and only if Fn is of positive constant curvature 1. Finally, we prove that (i) Fn is a locally flat Riemannian manifold if and only if [Formula: see text], (ii) the Jacobi operator [Formula: see text] is zero or commuting if and only if (M, F) have the zero flag curvature.


2009 ◽  
Vol 02 (02) ◽  
pp. 227-237
Author(s):  
Absos Ali Shaikh ◽  
Shyamal Kumar Hui

The object of the present paper is to introduce a type of non-flat Riemannian manifold called pseudo cyclic Ricci symmetric manifold and study its geometric properties. Among others it is shown that a pseudo cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. In this paper we also study conformally flat pseudo cyclic Ricci symmetric manifolds and prove that such a manifold can be isometrically immersed in a Euclidean manifold as a hypersurface.


Author(s):  
Zhongmin Qian

In the first part of this paper, Yau's estimates for positive L-harmonic functions and Li and Yau's gradient estimates for the positive solutions of a general parabolic heat equation on a complete Riemannian manifold are obtained by the use of Bakry and Emery's theory. In the second part we establish a heat kernel bound for a second-order differential operator which has a bounded and measurable drift, using Girsanov's formula.


2008 ◽  
Vol 145 (1) ◽  
pp. 141-151 ◽  
Author(s):  
RADU PANTILIE

AbstractWe classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic conformally-flat Riemannian manifolds of dimension at least four (Theorem 3.1), and (2) between conformally-flat Riemannian manifolds of dimensions at least three (Corollaries 3.4 and 3.6).Also, we prove (Proposition 2.5) an integrability result for any real-analytic submersion, from a constant curvature Riemannian manifold of dimensionn+2 to a Riemannian manifold of dimension 2, which can be factorised as ann-harmonic morphism with two-dimensional fibres, to a conformally-flat Riemannian manifold, followed by a horizontally conformal submersion, (n≥4).


Sign in / Sign up

Export Citation Format

Share Document