scholarly journals A Model for Regional Energy Utilization by Offline Heat Transport System and Distributed Energy Systems—Case Study in a Smart Community, Japan

2013 ◽  
Vol 05 (03) ◽  
pp. 190-205 ◽  
Author(s):  
Liyang Fan ◽  
Weijun Gao ◽  
Zhu Wang
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2263 ◽  
Author(s):  
Romano Wyss ◽  
Susan Mühlemeier ◽  
Claudia Binder

In this paper, we apply an indicator-based approach to measure the resilience of energy regions in transition to a case study region in Austria. The indicator-based approach allows to determine the resilience of the transition of regional energy systems towards higher shares of renewables and potentially overall higher sustainability. The indicators are based on two core aspects of resilience, diversity and connectivity. Diversity is thereby operationalized by variety, disparity and balance, whereas connectivity is operationalized by average path length, degree centrality and modularity. In order to get a full picture of the resilience of the energy system at stake throughout time, we apply the measures to four distinct moments, situated in the pre-development, take-off, acceleration and stabilization phase of the transition. By contextually and theoretically embedding the insights in the broader transitions context and empirically applying the indicators to a specific case, we derive insights on (1) how to interpret the results in a regional context and (2) how to further develop the indicator-based approach for future applications.


2017 ◽  
Vol 142 ◽  
pp. 1991-1996 ◽  
Author(s):  
Jing Kang ◽  
Shengwei Wang ◽  
Wenjie Gang

2014 ◽  
Vol 20 ◽  
pp. 12-19 ◽  
Author(s):  
Benjamin C. McLellan ◽  
Yusuke Kishita ◽  
Go Yoshizawa ◽  
Yohei Yamaguchi ◽  
Kazumasu Aoki ◽  
...  

2020 ◽  
Vol 197 ◽  
pp. 01006
Author(s):  
Pietro Lubello ◽  
Guglielmo Vaccaro ◽  
Carlo Carcasci

Renewable energy systems (RES) are currently being deployed on a large scale to meet the ambitious sustainable development goals for the next decades. A higher penetration of sustainable means of power production passes through the diffusion of RES-based distributed energy systems. The hybridization of such systems and their integration with Energy Storage Systems (ESS) can help improve reliability and level the mismatch between power production and consumption. In this paper, a novel modular tool for the simulation of distributed energy systems is presented by means of its application to a case study. The considered system is composed by PV modules, ESS and heat pumps. The optimal sizing of the components for self-consumption has been obtained through an electricity production cost minimization. A comparison between two different configurations has been conducted: in the first case, the thermal load is completely satisfied by a natural gas-fired boiler, while in the latter case, part of the thermal load is satisfied by a heat pump. The results have highlighted the impact of ESS on the economics of distributed energy systems and how the investment in such systems, in conditions similar to the case study, can be more easily sustained if a share of the total energy consumption of the unit is shifted from the thermal to the electrical part.


Sign in / Sign up

Export Citation Format

Share Document