scholarly journals Covariant Prolongation Structure, Conservation Laws and Soliton Solutions of the Gross-Pitaevskii Equation in the Bose-Einstein Condensate

2017 ◽  
Vol 05 (07) ◽  
pp. 1411-1423
Author(s):  
Souleymanou Abbagari ◽  
Hamadou Halidou ◽  
Thomas B. Bouetou ◽  
Timoleon C. Kofane
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ming Wang ◽  
Guo-Liang He

In this paper, we investigate a five-component Gross–Pitaevskii equation, which is demonstrated to describe the dynamics of an F=2 spinor Bose–Einstein condensate in one dimension. By employing the Hirota method with an auxiliary function, we obtain the explicit bright one- and two-soliton solutions for the equation via symbolic computation. With the choice of polarization parameter and spin density, the one-soliton solutions are divided into four types: one-peak solitons in the ferromagnetic and cyclic states and one- and two-peak solitons in the polar states. For the former two, solitons share the similar shape of one peak in all components. Solitons in the polar states have the one- or two-peak profiles, and the separated distance between two peaks is inversely proportional to the value of polarization parameter. Based on the asymptotic analysis, we analyze the collisions between two solitons in the same and different states.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 141-146 ◽  
Author(s):  
Zhenyun Qina ◽  
Gui Mu

The Gross-Pitaevskii equation (GPE) describing the dynamics of a Bose-Einstein condensate at absolute zero temperature, is a generalized form of the nonlinear Schr¨odinger equation. In this work, the exact bright one-soliton solution of the one-dimensional GPE with time-dependent parameters is directly obtained by using the well-known Hirota method under the same conditions as in S. Rajendran et al., Physica D 239, 366 (2010). In addition, the two-soliton solution is also constructed effectively


2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.


2013 ◽  
Vol 27 (25) ◽  
pp. 1350184 ◽  
Author(s):  
A. BENSEGHIR ◽  
W. A. T. WAN ABDULLAH ◽  
B. A. UMAROV ◽  
B. B. BAIZAKOV

In this paper, we study the response of a Bose–Einstein condensate with strong dipole–dipole atomic interactions to periodically varying perturbation. The dynamics is governed by the Gross–Pitaevskii equation with additional nonlinear term, corresponding to a nonlocal dipolar interactions. The mathematical model, based on the variational approximation, has been developed and applied to parametric excitation of the condensate due to periodically varying coefficient of nonlocal nonlinearity. The model predicts the waveform of solitons in dipolar condensates and describes their small amplitude dynamics quite accurately. Theoretical predictions are verified by numerical simulations of the nonlocal Gross–Pitaevskii equation and good agreement between them is found. The results can lead to better understanding of the properties of ultra-cold quantum gases, such as 52 Cr , 164 Dy and 168 Er , where the long-range dipolar atomic interactions dominate the usual contact interactions.


Author(s):  
Yunsong Guo ◽  
Yubin Jiao ◽  
Xiaoning Liu ◽  
Xiangbo Zhu ◽  
Ying Wang

In this study, we investigate the evolution of vortex in harmonically trapped two-component coupled Bose–Einstein condensate with quintic-order nonlinearity. We derive the vortex solution of this two-component system based on the coupled quintic-order Gross–Pitaevskii equation model and the variational method. It is found that the evolution of vortex is a metastable state. The radius of vortex soliton shrinks and expands with time, resulting in periodic breathing oscillation, and the angular frequency of the breathing oscillation is twice the value of the harmonic trapping frequency under infinitesimal nonlinear strength. At the same time, it is also found that the higher-order nonlinear term has a quantitative effect rather than a qualitative impact on the oscillation period. With practical experimental setting, we identify the quasi-stable oscillation of the derived vortex evolution mode and illustrated its features graphically. The theoretical results developed in this work can be used to guide the experimental observation of the vortex phenomenon in ultracold coupled atomic systems with quintic-order nonlinearity.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050241
Author(s):  
Jin Xu ◽  
Jinbin Li

We study the phase separation in three-component spin-orbit-angular-momentum coupled Bose–Einstein condensate with spin-1 in three dimensions. Different types of phase-separation are acquired upon an increase of the coupling strength, magnetic gradient strength, spin-dependent interaction strength and particle number above a critical value. Increasing the value of coupling strength and other related parameters shows distinct behaviors which are produced by repulsion for large strengths of spin-orbit angular-momentum (SOAM) coupling. The present investigation is carried out through a numerical Crank–Nicolson method of the underlying mean-field Gross–Pitaevskii equation.


2010 ◽  
Vol 24 (30) ◽  
pp. 2911-2920 ◽  
Author(s):  
ALAIN MOÏSE DIKANDÉ ◽  
ISAIAH NDIFON NGEK ◽  
JOSEPH EBOBENOW

A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose–Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross–Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter–wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.


2008 ◽  
Vol 17 (10) ◽  
pp. 2150-2154 ◽  
Author(s):  
S. YU. TORILOV ◽  
K. A. GRIDNEV ◽  
W. GREINER

The simple alpha-cluster model was used for the consideration of the chain states and Bose-Einstein condensation in the light self-conjugated nuclei. Obtained results were compared with predictions of the shell-model for the deformed nuclei, with calculations based on Gross-Pitaevskii equation and with recent experimental results.


Sign in / Sign up

Export Citation Format

Share Document