scholarly journals Aspect Ratio: A Major Controlling Factor of Radiation Characteristics of Microstrip Antenna

2011 ◽  
Vol 03 (11) ◽  
pp. 452-457 ◽  
Author(s):  
Syed Md. Danish Abbas ◽  
Sharmistha Paul ◽  
Jhelam Sen ◽  
Prity Rani Gupta ◽  
Kaushik Malakar ◽  
...  
2014 ◽  
Vol 685 ◽  
pp. 314-319
Author(s):  
Hong Yang ◽  
Dan Liu ◽  
Wei Chen

Based on the magnetic materials (JV-5) substrate, Double L-shaped slot microstrip antenna is designed. The bandwidth is over 2 times that of the normal substrate and a 40% reduction in size happens.. On this basis, the microstrip antenna with magnetic substrate EBG structure is designed and the EBG structure uses the corrosive effects of joint floor, namely getting periodic H-shaped and circular structures by the floor corrosion, and performing a simulation with HFSS14.0. The results show that the EBG structure of magnetic material having a prominent advantage of the miniaturization and bandwidth-broaden compared to a microstrip antenna with non-magnetic materials substrate, resulting in more than 10% relative bandwidth and a slight gain loss. To some degree, introducing EBG structure can reduce the size of the antenna and increase its bandwidth, and it also improve the gain and radiation characteristics of the antenna.Key words: EBG structure; magnetic material;Double L-shaped slot microstrip antenna; gain


2020 ◽  
Vol 12 (9) ◽  
pp. 906-914
Author(s):  
O. Borazjani ◽  
M. Naser-Moghadasi ◽  
J. Rashed-Mohassel ◽  
R. A. Sadeghzadeh

AbstractTo prevent far-field radiation characteristics degradation while increasing bandwidth, an attempt has been made to design and fabricate a microstrip antenna. An electromagnetic band gap (EBG) structure, including a layer of a metallic ring on a layer of Rogers 4003C substrate, is used. For a better design, a patch antenna with and without the EBG substrate has been simulated. The results show that the bandwidth can be improved up to 1.6 GHz in X-band by adding the EBG substrate. Furthermore, using this structure, a dual-band antenna was obtained as well. Finally, to validate the simulation results, a comparison has been done between simulation data and experimental results which demonstrate good agreement.


1980 ◽  
Vol 51 (7) ◽  
pp. 3907-3915 ◽  
Author(s):  
W. C. Chew ◽  
J. A. Kong ◽  
L. C. Shen

1981 ◽  
Vol 2 ◽  
pp. 176-182 ◽  
Author(s):  
Susan Specht Wickham ◽  
W. Hilton Johnson

The Tiskilwa Till Member of the Wedron Formation represents deposition by basal melt-outin the marginal area of the Laurentide ice sheetduring the Woodfordian (late-Wisconsinan) in Illinois. Distinctive characteristics include: a very thick, homogeneous till; relatively little ablation till; red color; sandy texture; illite content that is relatively low withrespect to other Woodfordian tills; and the presence of discontinuous basal zones of differing composition.Erosion and entrainment of debris from both distant and local source areas are evident in the Tiskilwa Jill. Basal thermal regime is suggested as a major controlling factor on the location of the zones of entrainment. The debris was homogenized en route to the margin and eventually was deposited as basal melt-out till near the margin. Deposition occurred within an interval of 6 ka or more during the first half of the Woodfordian.


Author(s):  
Abhijyoti Ghosh ◽  
Sudip Kumar Ghosh ◽  
Dia Ghosh ◽  
Sudipta Chattopadhyay

A simple and compact microstrip antenna of circular geometry with circular cut defected patch surface has been proposed for significant suppression of cross-polarized (XP) radiation compared with maximum co-polarized gain without affecting the co-polarized radiation pattern at its dominant mode. This will enhance the polarization purity in the radiation performance of the proposed antenna. About 27–28 dB isolation between co-polarized and XP radiations is achieved with the proposed structure. The present structure is simple and easy to develop commercially. The investigation of the new structure is carried out with a view to eliminate orthogonal resonance, which is generally attributed for high XP radiation from the microstrip patch antenna with conventional circular geometry. Comprehensive study on the resonance and radiation characteristics of the new geometry is presented. The present investigation provides an insightful visualization-based understanding of XP suppression with the present structure.


This paper presents the fabrication of an octagonal fractal hybrid micro strip radiator patch antenna that operates over a frequency range of 1.5 GHz to 2GHz suitable for low frequency wireless and mobile applications. The radiator has a dimension of 85x85mm2 on the radiating side and 100x86mm2 ground plane. The model is fabricated on Fire Redundant4 substrate with thickness of 1.6mm over a 10x10mm2 dimension and uses coaxial feeding technique. The model is tested for its performance in the range of 1.5 to 2 GHz on the radiator test bench consists of MIC10 antenna trainer kit with an allowable frequency of up to 2GHz. The radiation characteristics shown are having good return loss and average gain of 39dB with omni directional radiation pattern. The size is to be optimized as the dimensions are very large compared to the usual requirements.


2010 ◽  
Vol 40-41 ◽  
pp. 384-387
Author(s):  
Xin Zhang ◽  
Lei Li

In this paper, a new ultrahigh frequency circularly polarized microstrip antenna using in RFID reader is proposed. The proposed antenna has a simple structure, it has non-symmetrical rectangular corner truncated square patch, ground plane and a probe feed. To achieve good circular polarization(CP) radiation characteristics, it uses air as the dielectric layer. Simulation results of a constructed prototype with the center operating frequency at 923 MHz showed that the antenna has a return loss S11 of about −24 dB, a gain level of about 9.48 dBi. The antenna has good impedance and radiation characteristics over the required bandwidth, 920-925 MHz (Chinese UHF RFID band).


Sign in / Sign up

Export Citation Format

Share Document