scholarly journals RF Loss Model for Tree Canopies with Varying Water Content

2021 ◽  
Vol 13 (06) ◽  
pp. 83-101
Author(s):  
Sonam Peden ◽  
Ronald C. Bradbury ◽  
David William Lamb ◽  
Mark Hedley
2021 ◽  
Vol 13 (03) ◽  
pp. 41-56
Author(s):  
Sonam Peden ◽  
Ronald C. Bradbury ◽  
David William Lamb ◽  
Mark Hedley
Keyword(s):  

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1747 ◽  
Author(s):  
Javier Lozano-Parra ◽  
Manuel Pulido ◽  
Carlos Lozano-Fondón ◽  
Susanne Schnabel

Interactions between land and atmosphere directly influence hydrometeorological processes and, therefore, the local climate. However, because of heterogeneity of vegetation covers these feedbacks can change over small areas, becoming more complex. This study aims to define how the interactions between soil moisture and vegetation covers influence soil temperatures in very water-limited environments. In order to do that, soil water content and soil temperature were continuously monitored with a frequency of 30 min over two and half hydrological years, using capacitance and temperature sensors that were located in open grasslands and below tree canopies. The study was carried out on three study areas located in drylands of Mediterranean climate. Results highlighted the importance of soil moisture and vegetation cover in modifying soil temperatures. During daytime and with low soil moisture conditions, daily maximum soil temperatures were, on average, 7.1 °C lower below tree canopies than in the air, whereas they were 4.2 °C higher in grasslands than in the air. As soil wetness decreased, soil temperature increased, although this effect was significantly weaker below tree canopies than in grasslands. Both high soil water content and the effect of shading were reflected in a decrease of maximum soil temperatures and of their daily amplitudes. Statistical analysis emphasized the influence of soil temperature on soil water reduction, regardless of vegetation cover. If soil moisture deficits become more frequent due to climate change, variations in soil temperature could increase, affecting hydrometeorological processes and local climate.


2021 ◽  
Vol 1 ◽  
pp. 100008
Author(s):  
Sonam Peden ◽  
Ronald C. Bradbury ◽  
David William Lamb ◽  
Mark Hedley

1999 ◽  
Vol 3 (4) ◽  
pp. 517-527 ◽  
Author(s):  
N. A. Jackson ◽  
J. C. Wallace

Abstract. Time domain reflectometry [TDR] was used to investigate the spatial and temporal variation in surface soil water dynamics under a number of types of vegetation, including both trees and crops grown in isolation, and grown together as an agroforestry system. The installation and operation of this technique are presented, and discussed in terms of its suitability to monitor rapid fluctuations in soil-water content in a spatially heterogeneous system such as that described in this experiment. The relatively small sampling volume of each of the TDR waveguides permitted discrete measurements to be made of soil water content (θv). In the tree-only and tree+crop treatments, this revealed considerable variation in θv resulting from spatial redistribution of rainfall under the tree canopies, with a significant input to soil close to the base of the trees being made by stemflow, i.e. water intercepted by the tree canopy and channelled down the stem. Over the experimental period (one rainy season) the TDR data suggested that net recharge to the soil profile in the sole crop system was 53 mm, almost 75% more than occurred in either of the two treatments containing trees, reflecting greater rainfall interception by the tree canopies.


Author(s):  
Songquan Sun ◽  
Richard D. Leapman

Analyses of ultrathin cryosections are generally performed after freeze-drying because the presence of water renders the specimens highly susceptible to radiation damage. The water content of a subcellular compartment is an important quantity that must be known, for example, to convert the dry weight concentrations of ions to the physiologically more relevant molar concentrations. Water content can be determined indirectly from dark-field mass measurements provided that there is no differential shrinkage between compartments and that there exists a suitable internal standard. The potential advantage of a more direct method for measuring water has led us to explore the use of electron energy loss spectroscopy (EELS) for characterizing biological specimens in their frozen hydrated state.We have obtained preliminary EELS measurements from pure amorphous ice and from cryosectioned frozen protein solutions. The specimens were cryotransfered into a VG-HB501 field-emission STEM equipped with a 666 Gatan parallel-detection spectrometer and analyzed at approximately −160 C.


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


1982 ◽  
Vol 43 (C9) ◽  
pp. C9-455-C9-458 ◽  
Author(s):  
M. Takata ◽  
M. Tomozawa ◽  
J. Acocella ◽  
J. Molinelli ◽  
C. Y. Erwin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document