scholarly journals The Potentials of Kyanite Particles and Coconut Shell Ash as Strengthener in Aluminum Alloy Composite for Automobile Brake Disc

Author(s):  
Simon Godenaan Datau ◽  
Mohammed Ahmed Bawa ◽  
Jacob Shekwonudu Jatau ◽  
Muhammad Hamisu Muhammad ◽  
Adekunle Sefiu Bello
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Justine O Bucham ◽  
Baba A Aliyu ◽  
Abubakar Muhammad

Abstract- This paper is aimed at comparing the braking speed of the developed Composite Brake Disc (CBD) with that of a nodular cast iron Honda Accord (2000) Model Brake Disc (HABD). The test samples were produced from Aluminium alloy (Al6061), Coconut Shell Ash (CSA) and Silicon Carbide (SiC) by Stir casting and machined into standard specimens for microstructure analysis, density test, mechanical tests (hardness, tensile and impact), wear test and thermal test. The characterization of coconut shell ash particle was carried out using X-ray Flourescent equipment. Six samples were produced, four composite samples; C1 (70% Al, 5% SiC, 20% CSA), C2 (70% Al, 10% SiC, 15% CSA), C3 (70% Al, 15% SiC, 10% CSA) and C4 (70% Al, 20% SiC, 5% CSA), aluminium alloy sample (A1) and as-cast nodular cast iron sample (N1) obtained from HABD. Sample ‘C4’ had the best physical, mechanical, wear and thermal properties (Densty: 3.15 g/cm3, Hardness: 68 kg/mm2, Tensile Strength:  196.12 N/mm2, Impact Energy: 8.05 J, Wear rate: 0.0002328 g/m, Thermal Conductivity: 72.57 W/m-K) and was used to produce the CBD. From the values of coefficient of frictions obtained for CBD and HABD, the braking speeds were calculated and HABD was seen to have a lower braking speed (56.65 m/s) than the CBD (94.42 m/s) because of its higher coefficient of friction. The higher braking speed of the composite brake disc (CBD) as compared to the Honda Accord Brake Disc (HABD) could be as a result of inadequate reinforcements in the aluminium alloy matrix. Hence,  the produced CBD cannot be used as an alternative for the nodular cast iron Honda accord brake disc (HABD) even as problems of heavy weight and breakage that may occur due to heavy impact associated with cast iron brake disc have been addressed using the developed composite.Keywords,- Aluminium Alloy, Braking Speed, Coconut Shell, Composite, Silicon Carbide


2018 ◽  
Vol 350 ◽  
pp. 391-400 ◽  
Author(s):  
Xiang Qiu ◽  
Naeem ul Haq Tariq ◽  
Ji-qiang Wang ◽  
Jun-rong Tang ◽  
Lawrence Gyansah ◽  
...  

2011 ◽  
Vol 528 (7-8) ◽  
pp. 3243-3248 ◽  
Author(s):  
S.C. Xu ◽  
L.D. Wang ◽  
P.T. Zhao ◽  
W.L. Li ◽  
Z.W. Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document