scholarly journals The Novel Interaction Model of Dark Energy and Dark Matter

2015 ◽  
Vol 06 (02) ◽  
pp. 101-105
Author(s):  
Dezhi Hu
2019 ◽  
Vol 74 (5) ◽  
pp. 387-446
Author(s):  
Jochem Hauser ◽  
Walter Dröscher

AbstractThis article attempts to explain the underlying physics of several recent experiments and astrophysical observations that have been mystifying the physics community for quite some time. So far, none of the advanced theories beyond the standard models of particle physics and cosmology have shown sufficient potential to resolve these mysteries. The reason for this failure may lie in the fact that these theories are based on the concept of extra space dimensions that appears to be in conflict with numerous experiments, in particular with recent Large Hadron Collider data. Therefore, the novel idea of extra number systems is introduced, replacing the idea of extra space dimensions. This approach is complemented by a set of fundamental physical principles that provide the constraints and guidelines for a modified physical formulation in agreement with known experimental reality. However, such a theory requires novel physical concepts in conjunction with novel symmetry groups. These groups give rise to additional types of matter, termed hypercomplex masses (which are responsible for the extreme hypercomplex gravitational fields, see below, and are also denoted as matter flavour), including, for instance, particles of negative mass, identified with dark matter. Furthermore, four-dimensional Minkowski spacetime, assumed to be a quasi de Sitter space $dS^{1,3}$dual spacetime, $DdS^{1,3}$, with imaginary time coordinate; that is, time is a complex quantity. The three spatial coordinates are shared by the two spacetimes. Dark matter is assumed to reside in $DdS^{1,3}$ and therefore is principally invisible. On the other hand, its gravitational interaction with ordinary matter (m ≥ 0) in spacetime $dS^{1,3}$ is directly perceptible. The novel group structure predicts the existence of a fourth particle family of negative masses; that is, besides the dark matter particle χ of mass $m_{\chi}\approx-80.77$ GeV/c2, there is the dark neutrino νχ of mass $m_{\nu_{\chi}}\approx-3.23$ eV/c2. Moreover, the hypercomplex group structure of gravity ($SU(2)\times SU(2)$) postulates three gravitational bosons for cosmological fields [resulting from Einstein’s theory of general relativity (GR)], the graviton $\nu_{G_{N}}$ with spin 2, the novel gravitophoton $\nu_{gp}$ with spin 1 (existence of weak gravitomagnetic fields of GR), and the quintessence particle νq with spin 0, which, when present, mediates an interaction between ordinary matter (m ≥ 0) and the ubiquitous scalar field of dark energy. In addition, the existence of extreme gravity fields (hypercomplex gravity) is postulated, based on the second group SU(2), and an interaction between electromagnetism and hypercomplex gravity is predicted, mediated by three additional hypercomplex-gravity bosons. Some long-standing problems of cosmology will be addressed; namely, the Big Bang scenario and the origin of dark energy and the nature of dark matter and their relation to the modified Newtonian dynamics hypothesis will be discussed.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2006 ◽  
Author(s):  
Roberto Mainini ◽  
Loris Colombo ◽  
Silvio Bonometto
Keyword(s):  

2003 ◽  
Vol 568 (1-2) ◽  
pp. 8-10 ◽  
Author(s):  
Ramzi R Khuri
Keyword(s):  

2010 ◽  
Vol 19 (08n10) ◽  
pp. 1397-1403
Author(s):  
L. MARASSI

Several independent cosmological tests have shown evidences that the energy density of the universe is dominated by a dark energy component, which causes the present accelerated expansion. The large scale structure formation can be used to probe dark energy models, and the mass function of dark matter haloes is one of the best statistical tools to perform this study. We present here a statistical analysis of mass functions of galaxies under a homogeneous dark energy model, proposed in the work of Percival (2005), using an observational flux-limited X-ray cluster survey, and CMB data from WMAP. We compare, in our analysis, the standard Press–Schechter (PS) approach (where a Gaussian distribution is used to describe the primordial density fluctuation field of the mass function), and the PL (power–law) mass function (where we apply a non-extensive q-statistical distribution to the primordial density field). We conclude that the PS mass function cannot explain at the same time the X-ray and the CMB data (even at 99% confidence level), and the PS best fit dark energy equation of state parameter is ω = -0.58, which is distant from the cosmological constant case. The PL mass function provides better fits to the HIFLUGCS X-ray galaxy data and the CMB data; we also note that the ω parameter is very sensible to modifications in the PL free parameter, q, suggesting that the PL mass function could be a powerful tool to constrain dark energy models.


2011 ◽  
Vol 20 (13) ◽  
pp. 2543-2558 ◽  
Author(s):  
SAMUEL LEPE ◽  
JAVIER LORCA ◽  
FRANCISCO PEÑA ◽  
YERKO VÁSQUEZ

From a variational action with nonminimal coupling with a scalar field and classical scalar and fermionic interaction, cosmological field equations can be obtained. Imposing a Friedmann–Lemaître–Robertson–Walker (FLRW) metric, the equations lead directly to a cosmological model consisting of two interacting fluids, where the scalar field fluid is interpreted as dark energy and the fermionic field fluid is interpreted as dark matter. Several cases were studied analytically and numerically. An important feature of the non-minimal coupling is that it allows crossing the barrier from a quintessence to phantom behavior. The insensitivity of the solutions to one of the parameters of the model permits it to find an almost analytical solution for the cosmological constant type of universe.


2010 ◽  
Vol 16 (2) ◽  
pp. 151-159 ◽  
Author(s):  
S. Chakraborty ◽  
T. Bandyopadhyay
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document