scholarly journals Presence of <i>Actinobacillus pleuropneumoniae, Streptococcus suis, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis and Mycoplasma hyopneumoniae</i> in upper respiratory tract of swine in farms from Aguascalientes, Mexico

2013 ◽  
Vol 03 (02) ◽  
pp. 132-137 ◽  
Author(s):  
Abraham Loera-Muro ◽  
Francisco J. Avelar-González ◽  
Víctor M. Loera-Muro ◽  
Mario Jacques ◽  
Alma L. Guerrero-Barrera
2014 ◽  
Vol 34 (7) ◽  
pp. 643-648 ◽  
Author(s):  
Carolini F. Coelho ◽  
Priscila Zlotowski ◽  
Caroline P. de Andrade ◽  
Sandra M. Borowski ◽  
Thaís S. Gaggini ◽  
...  

O objetivo do presente estudo foi identificar a frequência de lesões macroscópicas e microscópicas e dos agentes bacterianos envolvidos em pericardites em suínos no abate no Estado do Rio Grande do Sul. As amostras foram coletadas em frigoríficos de suínos com Serviço de Inspeção Federal (SIF) entre fevereiro a outubro de 2010 e a condenação por pericardite dos animais acompanhados foi de 3,9% (299/7.571). No total foram investigados 91 casos de pericardites, 89% deles foram classificados como crônicos por histopatologia e pleurite crônica foi observada em 47% dos pulmões correspondentes, todavia não houve associação significativa entre as duas lesões. Os agentes bacterianos isolados a partir dos corações foram Streptococcus spp., Pasteurella multocida, Haemophilus parasuis e Streptococcus suis. DNA bacterianos mais detectados pela PCR foram de Mycoplasma hyopneumoniae e Actinobacillus pleuropneumoniae. Houve associação significativa entre isolamento de P. multocida e Streptococcus sp. nos corações e pulmões correspondentes. Esses resultados sugerem que a infecção no pulmão possa ter servido de porta de entrada para a colonização do pericárdio adjacente. Apesar de M. hyopneumoniae ter sido o agente detectado com maior frequência pela PCR em corações e pulmões correspondentes, não houve associação significativa da detecção dos agentes nos órgãos. Isto sugere que as infecções foram eventos independentes. Os demais agentes investigados não apresentaram associação significativa entre isolamento ou detecção de DNA em coração e pulmão correspondente. Outro achado importante foi a presença de coinfecções bacterianas em 2% dos corações e por PCR foi detectado DNA bacteriano de dois ou mais agentes em 16,5% dos corações. Esses resultados sugerem que as coinfecções em pericardites precisam ser melhor estudadas.


2002 ◽  
Vol 70 (2) ◽  
pp. 481-490 ◽  
Author(s):  
Susan L. Brockmeier ◽  
Karen B. Register ◽  
Tibor Magyar ◽  
Alistair J. Lax ◽  
Gillian D. Pullinger ◽  
...  

ABSTRACT Bordetella bronchiseptica is one of the etiologic agents causing atrophic rhinitis and pneumonia in swine. It produces several purported virulence factors, including the dermonecrotic toxin (DNT), which has been implicated in the turbinate atrophy seen in cases of atrophic rhinitis. The purpose of these experiments was to clarify the role of this toxin in respiratory disease by comparing the pathogenicity in swine of two isogenic dnt mutants to their virulent DNT+ parent strains. Two separate experiments were performed, one with each of the mutant-parent pairs. One-week-old cesarean-derived, colostrum-deprived pigs were inoculated intranasally with the parent strain, the dnt mutant strain, or phosphate-buffered saline. Weekly nasal washes were performed to monitor colonization of the nasal cavity, and the pigs were euthanized 4 weeks after inoculation to determine colonization of tissues and to examine the respiratory tract for pathology. There was evidence that colonization of the upper respiratory tract, but not the lower respiratory tract, was slightly greater for the parent strains than for the dnt mutants. Moderate turbinate atrophy and bronchopneumonia were found in most pigs given the parent strains, while there was no turbinate atrophy or pneumonia in pigs challenged with the dnt mutant strains. Therefore, production of DNT by B. bronchiseptica is necessary to produce the lesions of turbinate atrophy and bronchopneumonia in pigs infected with this organism.


1999 ◽  
Vol 6 (2) ◽  
pp. 199-203 ◽  
Author(s):  
T. D. C. Hamilton ◽  
J. M. Roe ◽  
C. M. Hayes ◽  
P. Jones ◽  
G. R. Pearson ◽  
...  

ABSTRACT Pigs reared commercially indoors are exposed to air heavily contaminated with particulate and gaseous pollutants. Epidemiological surveys have shown an association between the levels of these pollutants and the severity of lesions associated with the upper respiratory tract disease of swine atrophic rhinitis. This study investigated the role of aerial pollutants in the etiology of atrophic rhinitis induced by Pasteurella multocida. Forty, 1-week-old Large White piglets were weaned and divided into eight groups designated A to H. The groups were housed in Rochester exposure chambers and continuously exposed to the following pollutants: ovalbumin (groups A and B), ammonia (groups C and D), ovalbumin plus ammonia (groups E and F), and unpolluted air (groups G and H). The concentrations of pollutants used were 20 mg m−3 total mass and 5 mg m−3 respirable mass for ovalbumin dust and 50 ppm for ammonia. One week after exposure commenced, the pigs in groups A, C, E, and G were infected with P. multocida type D by intranasal inoculation. After 4 weeks of exposure to pollutants, the pigs were killed and the extent of turbinate atrophy was assessed with a morphometric index (MI). Control pigs kept in clean air and not inoculated with P. multocida (group H) had normal turbinate morphology with a mean MI of 41.12% (standard deviation [SD], ± 1.59%). In contrast, exposure to pollutants in the absence of P. multocida (groups B, D, and F) induced mild turbinate atrophy with mean MIs of 49.65% (SD, ±1.96%), 51.04% (SD, ±2.06%), and 49.88% (SD, ±3.51%), respectively. A similar level of atrophy was also evoked by inoculation with P. multocida in the absence of pollutants (group G), giving a mean MI of 50.77% (SD, ±2.07%). However, when P. multocida inoculation was combined with pollutant exposure (groups A, C, and E) moderate to severe turbinate atrophy occurred with mean MIs of 64.93% (SD, ±4.64%), 59.18% (SD, ±2.79%), and 73.30% (SD, ±3.19%), respectively. The severity of atrophy was greatest in pigs exposed simultaneously to dust and ammonia. At the end of the exposure period, higher numbers of P. multocida bacteria were isolated from the tonsils than from the nasal membrane, per gram of tissue. The severity of turbinate atrophy in inoculated pigs was proportional to the number of P. multocida bacteria isolated from tonsils (r 2 = 0.909, P < 0.05) and nasal membrane (r 2 = 0.628, P< 0.05). These findings indicate that aerial pollutants contribute to the severity of lesions associated with atrophic rhinitis by facilitating colonization of the pig’s upper respiratory tract byP. multocida and also by directly evoking mild atrophy.


1998 ◽  
Vol 36 (5) ◽  
pp. 1260-1265 ◽  
Author(s):  
T. D. C. Hamilton ◽  
J. M. Roe ◽  
C. M. Hayes ◽  
A. J. F. Webster

Pigs reared in intensive production systems are continuously exposed to ammonia released by the microbial degradation of their excrement. Exposure to this gas has been shown to increase the severity of the disease progressive atrophic rhinitis by facilitating colonization of the pig’s upper respiratory tract by Pasteurella multocida. The etiological mechanism responsible for this synergy was investigated by studying the colonization kinetics of P. multocida enhanced by ammonia and comparing them with those evoked by an established disease model. Three-week-old Large White piglets were weaned and allocated to five experimental groups (groups A to E). Pigs in groups A and B were exposed continuously to ammonia at 20 ppm for the first 2 weeks of the study. Pigs in group C were pretreated with 0.5 ml of 1% acetic acid per nostril on days −2 and −1 of the study. On day 0 all the pigs in groups A, C, and D were inoculated with 1.4 × 108 toxigenic P. multocida organisms given by the intranasal route. The kinetics of P. multocida colonization were established by testing samples obtained at weekly intervals throughout the study. The study was terminated on day 37, and the extent of turbinate atrophy was determined by using a morphometric index. The results of the study showed that exposure to aerial ammonia for a limited period had a marked effect on the colonization of toxigenic P. multocidain the nasal cavities of pigs, which resulted in the almost total exclusion of commensal flora. In contrast, ammonia had only a limited effect on P. multocida colonization at the tonsil. The exacerbation of P. multocida colonization by ammonia was restricted to the period of ammonia exposure, and the number ofP. multocida organisms colonizing the upper respiratory tract declined rapidly upon the cessation of exposure to ammonia. During the exposure period, the ammonia levels in mucus recovered from the nasal cavity and tonsil were found to be 7- and 3.5-fold higher, respectively, than the levels in samples taken from unexposed controls. Acetic acid pretreatment also induced marked colonization of the nasal cavity which, in contrast to that induced by ammonia, persisted throughout the time course of the study. Furthermore, acetic acid pretreatment induced marked but transient colonization of the tonsil. These findings suggest that the synergistic effect of ammonia acts through an etiological mechanism different from that evoked by acetic acid pretreatment. A strong correlation was found between the numbers of P. multocida organisms isolated from the nasal cavity and the severity of clinical lesions, as determined by using a morphometric index. The data presented in the paper highlight the potential importance of ammonia as an exacerbating factor in respiratory disease of intensively reared livestock.


2021 ◽  
Vol 12 (3) ◽  
pp. 681-693
Author(s):  
Arianna Romero Flores ◽  
Marcelo Gottschalk ◽  
Gabriela Bárcenas Morales ◽  
Víctor Quintero Ramírez ◽  
Rosario Esperanza Galván Pérez ◽  
...  

Infections caused by Streptococcus suis (S. suis) pose a problem for the pig industry worldwide. Pigs often carry multiple serotypes of S. suis in the upper respiratory tract, where S. suis is frequently isolated from. The clinical diagnosis of the infection is presumptive and is generally based on clinical signs, the age of the animal and macroscopic lesions. In the laboratory, identification of S. suis is performed biochemically, and then, serotyping is performed with antisera to determine the serotype, but these tests can be inconclusive. To date, there are few studies that have documented the presence and diversity of S. suis serotypes in Mexico. In the present study, it was characterized S. suis strains from Mexican pig farms using molecular approaches; samples were first processed by PCR of the gdh gene to detect S. suis. Positive samples were then subjected to a two-step multiplex PCR (cps PCR) to detect and characterize each strain; the first step consisted of a grouping PCR and the second step consisted of a typing PCR. The serotypes detected in the pig farming areas of Mexico included 1/2, 2, 3, 5, 7, 8, 9, 17, and 23. These findings are important for the characterization of serotypes present in Mexico and for outbreak prevention.


2012 ◽  
Vol 51 (No. 5) ◽  
pp. 168-179 ◽  
Author(s):  
K. Nedbalcova ◽  
P. Satran ◽  
Z. Jaglic ◽  
R. Ondriasova ◽  
Z. Kucerova

Haemophilus parasuis is a common epiphyte of the upper respiratory tract of pigs. The factors of H. parasuis pathogenicity that enable some strains to be virulent and consequently cause a clinical disease have not been established yet. Fifteen serovars of H. parasuis have been described at present. Individual serovars differ in virulence, and considerable differences in virulence also exist within each serovar. Virulent strains can particularly participate as microorganisms secondary to pneumonia, cause septicaemia without polyserositis or Gl&auml;sser&rsquo;s disease characterized by polyserositis, pericarditis, arthritis and meningitis. Clinical symptoms of this disease are highly variable. Therefore, culture detection of causative agent, particularly from the brain, joints and polyserositis is an essential diagnostic tool. The disease caused by H. parasuis can be treated with antibiotics; however, oral or parenteral administration of very high doses of antibiotics is necessary. The level of animal hygiene and animal husbandry are important factors for prevention of this disease. Commercial or autogenous vaccines can be used in the immunoprophylaxis of pre-parturient sows and their progeny after weaning. For the production of autogenous vaccines, it is most effective to use isolates from animals with lesions present in CNS. Isolates recovered from arthritic and systemic sites of infection are less suitable and isolates recovered from lungs are not suitable at all because of their heterogeneity.


1990 ◽  
Vol 50 (1) ◽  
pp. 173-182 ◽  
Author(s):  
J. F. Robertson ◽  
D. Wilson ◽  
W. J. Smith

ABSTRACTInfectious atrophic rhinitis is a disease of the upper respiratory tract of pigs, characterized in the live animal by deformation of the snout and conchal atrophy. However, the severity of the disease in pigs on commercial units is highly variable and air quality may be implicated as a significant factor in addition to the recognized pathogens. In this study the aerial environment was monitored in 49 pig buildings on 12 commercial farrowing-finishing units. A total of 1117 pigs from the 12 farms were examined individually at commercial slaughter weight to quantify the severity of conchal atrophy, using snout scoring and morphometric techniques.A number of significant relationships were shown between environmental variables in the farrowing house and the severity of conchal atrophy. Mean snout score (MSS) and the percentage of snouts from each herd sample with a score of three or more (SS3) were correlated with total bacterial counts (r = 0·78 (P < 0·01) and 0-83 (P < 0·01) respectively), counts of 10 [mi to >15 urn particles (r = 0·67 (P <0·05), 0·73 (P <0·05)) and concentrations of gravimetric dust (r = 0·65 (P <0·05), 0·64 (P <0·05)). Concentrations of ammonia were correlated with SS3 (r = 0·68 (P <0·05)).Dust in the first-stage weaner houses was again a significant component of the aerial environment associated with the severity of the disease. MSS and SS3 were correlated with counts of 10 urn to >15 μm particles (r = 0·66 (P <0·05), 0·68 (P <0·05)), concentrations of respirable dust (r = 0·67 (P <0·05), 0·63 (P <0·05)), total dust (r = 0·75 (P <0·05), 0·87 (P <0·001)), and gravimetric dust (r = 0·83 (P <0·01), 0·88 (P <0·001)). The results support the theory that the mass or number of particles present as inspirable aerosols, and the presence of large numbers of viable bacteria may compromise the local defence mechanism of the upper respiratory tract in the pig and facilitate colonization by Bordetella bronchiseptica and Pasteurella multocida. Saturation deficit in the second-stage weaner houses was correlated with both mean morphometric index and SS3 (r = 0·860 (P <0·01) and 0·683 (P <0·05) respectively), and volumetric stocking density in the finishing houses was correlated with both MSS and SS3 (r = -0·84 (P <0·01), -0·64 (P <0·05)). It is hypothesized that the severity of the disease may be lessened by reducing the concentrations of dust, microbes and ammonia which may play a significant role in the development of the disease.


Sign in / Sign up

Export Citation Format

Share Document