scholarly journals Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation

2021 ◽  
Vol 11 (03) ◽  
pp. 314-350
Author(s):  
Andras Szasz
2013 ◽  
Vol 8 (5) ◽  
pp. 1934578X1300800
Author(s):  
Marco Fidaleo ◽  
Claudia Sartori

In this study we evaluated in mouse liver the effects of cocoa on PPARα signaling. To this aim, mouse diet was supplemented with 10%, w/w, cocoa for one and two weeks. We quantified the expression of PPARα target genes and PPARα gene level and some parameters related to PPARα activation (hepato-somatic index, peroxisomal β-oxidation system and catalase activity). Moreover, we evaluated antioxidant capacity of cocoa by detecting the expression of CAT and SOD1 genes (known to be involved in oxidative balance) and hypolipidemic properties on serum triglycerides. We made a parallel treatment with 0.025%, w/w, ciprofibrate, a well-known PPARα activator, to quantify signal modulation by cocoa. It is known that PPARα activation by ciprofibrate is mediated by direct binding to the receptor and strongly induces expression of target genes. Our results show that cocoa weakly up-regulates PPARα target genes as a consequence of the modulation of the PPARα gene level and does not improve the triglyceride profile in blood. Finally, cocoa increased SOD1 gene expression suggesting an antioxidant effect.


2014 ◽  
Vol 112 (6) ◽  
pp. 1584-1598 ◽  
Author(s):  
Marino Pagan ◽  
Nicole C. Rust

The responses of high-level neurons tend to be mixtures of many different types of signals. While this diversity is thought to allow for flexible neural processing, it presents a challenge for understanding how neural responses relate to task performance and to neural computation. To address these challenges, we have developed a new method to parse the responses of individual neurons into weighted sums of intuitive signal components. Our method computes the weights by projecting a neuron's responses onto a predefined orthonormal basis. Once determined, these weights can be combined into measures of signal modulation; however, in their raw form these signal modulation measures are biased by noise. Here we introduce and evaluate two methods for correcting this bias, and we report that an analytically derived approach produces performance that is robust and superior to a bootstrap procedure. Using neural data recorded from inferotemporal cortex and perirhinal cortex as monkeys performed a delayed-match-to-sample target search task, we demonstrate how the method can be used to quantify the amounts of task-relevant signals in heterogeneous neural populations. We also demonstrate how these intuitive quantifications of signal modulation can be related to single-neuron measures of task performance ( d′).


1995 ◽  
Vol 52 (1) ◽  
pp. 93-96 ◽  
Author(s):  
T. Doderer ◽  
Y. M. Zhang ◽  
D. Winkler ◽  
R. Gross

2010 ◽  
Vol 298 (2) ◽  
pp. H562-H569 ◽  
Author(s):  
Qi Xi ◽  
Edward Umstot ◽  
Guiling Zhao ◽  
Damodaran Narayanan ◽  
Charles W. Leffler ◽  
...  

Glutamate is the principal cerebral excitatory neurotransmitter and dilates cerebral arterioles to match blood flow to neural activity. Arterial contractility is regulated by local and global Ca2+ signals that occur in smooth muscle cells, but modulation of these signals by glutamate is poorly understood. Here, using high-speed confocal imaging, we measured the Ca2+ signals that occur in arteriole smooth muscle cells of newborn piglet tangential brain slices, studied signal regulation by glutamate, and investigated the physiological function of heme oxygenase (HO) and carbon monoxide (CO) in these responses. Glutamate elevated Ca2+ spark frequency by ∼188% and reduced global intracellular Ca2+ concentration ([Ca2+]i) to ∼76% of control but did not alter Ca2+ wave frequency in brain arteriole smooth muscle cells. Isolation of cerebral arterioles from brain slices abolished glutamate-induced Ca2+ signal modulation. In slices treated with l-2-α-aminoadipic acid, a glial toxin, glutamate did not alter Ca2+ sparks or global [Ca2+]i but did activate Ca2+ waves. This shift in Ca2+ signal modulation by glutamate did not occur in slices treated with d-2-α-aminoadipic acid, an inactive isomer of l-2-α-aminoadipic acid. In the presence of chromium mesoporphyrin, a HO blocker, glutamate inhibited Ca2+ sparks and Ca2+ waves and did not alter global [Ca2+]i. In isolated arterioles, CORM-3 [tricarbonylchloro(glycinato)ruthenium(II)], a CO donor, activated Ca2+ sparks and reduced global [Ca2+]i. These effects were blocked by 1 H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one, a soluble guanylyl cyclase inhibitor. Collectively, these data indicate that glutamate can modulate Ca2+ sparks, Ca2+ waves, and global [Ca2+]i in arteriole smooth muscle cells via mechanisms that require astrocytes and HO. These data also indicate that soluble guanylyl cyclase is involved in CO activation of Ca2+ sparks in arteriole smooth muscle cells.


2009 ◽  
Vol 26 (4) ◽  
pp. 734 ◽  
Author(s):  
M. R. Gadsdon ◽  
J. Parsons ◽  
J. R. Sambles

Sign in / Sign up

Export Citation Format

Share Document