scholarly journals Generic Method for Merging Satellite and Historical Ground Station Data to Design Rainfall Intensity Duration Frequency (IDF) Curves in Recordless Sub-Saharian Countries

2018 ◽  
Vol 08 (04) ◽  
pp. 101-118
Author(s):  
Jorge E. Matos
Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
Kyungmin Kim ◽  
Jeonghyeon Choi ◽  
Okjeong Lee ◽  
Dong-Hyun Cha ◽  
Sangdan Kim

One of the most common ways to investigate changes in future rainfall extremes is to use future rainfall data simulated by climate models with climate change scenarios. However, the projected future design rainfall intensity varies greatly depending on which climate model is applied. In this study, future rainfall Intensity–Duration–Frequency (IDF) curves are projected using various combinations of climate models. Future Ensemble Average (FEA) is calculated using a total of 16 design rainfall intensity ensembles, and uncertainty of FEA is quantified using the coefficient of variation of ensembles. The FEA and its uncertainty vary widely depending on how the climate model combination is constructed, and the uncertainty of the FEA depends heavily on the inclusion of specific climate model combinations at each site. In other words, we found that unconditionally using many ensemble members did not help to reduce the uncertainty of future IDF curves. Finally, a method for constructing ensemble members that reduces the uncertainty of future IDF curves is proposed, which will contribute to minimizing confusion among policy makers in developing climate change adaptation policies.


2016 ◽  
Author(s):  
Reza Ghazavi ◽  
Ali Moafi Rabori ◽  
Mohsen Ahadnejad Reveshty

Abstract. Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormwater Management Model (SWMM). The accuracy of model simulations was confirmed based on the results of calibration. Design hyetographs in different return periods show that estimated rainfall depth via Sherman method are greater than other method except for 2-year return period. According to Ghahreman and Abkhezr method, decrease of runoff peak was 30, 39, 41 and 42 percent for 5-10-20 and 50-year return periods respectively, while runoff peak for 2-year return period was increased by 20 percent.


2020 ◽  
Vol 17 (3) ◽  
pp. 223-228
Author(s):  
S.O. Oyegoke ◽  
A.S. Adebanjo ◽  
H.J. Ododo

With the large inter-annual variability of rainfall in Northern Nigeria, a zone subject to frequent dry spells which often result in severe and widespread droughts, the need for intense study of rainfall and accurate forecast of rainfall intensity duration frequency (IDF) curves cannot be over emphasized. The Intensity Duration Frequency relationship is a mathematical relationship between the rainfall intensity and rainfall duration for given return periods. Using a subset of the network of fifteen continuous auto recording rain gauges available in Northern Nigeria, a total of seven different time durations ranging from 12 minutes to 24 hours were developed for return periods of 2, 5, 10, 25, 50 and 100 years. The maximum data series so obtained was fitted to Gumbel’s Extreme Value Type 1 distribution. Linear Regression Analysis was then used to obtain the intensity-duration relationships for the various locations from which Intensity-Duration Frequency (IDF) curves were generated using Microsoft Excel for various return periods. Keywords:  Extreme rainfall, intensity, duration, frequency, Northern Nigeria


Author(s):  
J. O. Ehiorobo ◽  
O.C. Izinyon ◽  
R. I. Ilaboya

Rainfall Intensity-Duration-Frequency (IDF) relationship remains one of the mostly used tools in hydrology and water resources engineering, especially for planning, design and operations of water resource projects. IDF relationship can provide adequate information about the intensity of rainfall at different duration for various return periods. The focus of this research was to develop IDF curves for the prediction of rainfall intensity within the middle Niger River Basin (Lokoja and Ilorin) using annual maximum daily rainfall data. Forty (40) year’s annual maximum rainfall data ranging from 1974 to 2013 was employed for the study. To ascertain the data quality, selected preliminary analysis technique including; descriptive statistics, test of homogeneity and outlier detection test were employed. To compute the three hours rainfall intensity, the ratio of rainfall amount and duration was used while the popular Gumbel probability distribution model was employed to calculate the rainfall frequency factor. To assess the best fit model that can be employed to predict rainfall intensity for various return periods at ungauged locations, four empirical IDF equations, namely; Talbot, Bernard, Kimijima and Sherman equations were employed. The model with the least calculated sum of minimized root mean square error (RMSE) was adopted as the best fit empirical model. Results obtained revealed that the Talbot model was the best fit model for Ilorin and Lokoja with calculated sum of minimized error of 1.32170E-07 and 8.953636E-08. This model was thereafter employed to predict the rainfall intensity for different durations at 2, 5, 10, 25, 50 and 100yrs return periods respectively.


2021 ◽  
Author(s):  
Bora Shehu ◽  
Winfried Willems ◽  
Luisa Thiele ◽  
Henrike Stockel ◽  
Uwe Haberlandt

<p><span>Rainfall intensity-duration-frequency (IDF) curves are required for the design of several water systems and protection works. These curves are typically generated from the station data by fitting a theoretical distribution either to the annual extremes (AMS) or partial extremes (PE) series. Nevertheless, two main problems arise: i) for generating intensity depth for high return periods, long time series are needed (more than 40 years). While this is the case mainly for daily recordings, for sub-hourly time series only few point measurements are available. ii) as the station data are only local measurements, there is a need for regionalization of the of IDF curves to ungauged locations. Thus, the aim of this study is to investigate the use of different data types and methods in generating reliable IDF curves for ungauged locations. </span></p><p><span>For this purpose, the available gauge data from the German Weather Service (DWD) in Germany are employed, which include: 5000 daily stations with more than 40 years available, 1100 sub-hourly (5min) recordings with observations period shorter than 20 years, and finally 89 sub-hourly (5min) recordings with 60-70 years of observations. Annual extremes are extracted for each location for different durations D=5, 10, 15, 30, 60, 120, 180, 240, 360, 720, 2880 minutes, and a Generalized Extreme Value (GEV) probability distribution is fitted to each duration level as well as across all duration levels by the methods of the L-moments and Maximum-Likelihood, in order to derive the intensity quantiles for the given return periods Ta=2, 10, 20 and 100 years. First, a disaggregation scheme to 5 min resolution is performed on the daily recordings in order to investigate if disaggregated daily data can be useful for the IDF estimation of sub-daily durations. Then, the rainfall extremes of short observations are corrected by a correlation-based augmentation method. Finally, as the extreme intensities and durations are co-dependent, a normalization of the AMS over all the durations is performed.</span></p><p><span>To evaluate the regionalization of the IDF curves to ungauged regions, three methods are investigated: i) flood index method ii) regionalization with normalization of extremes over the durations and ii) kriging interpolation (ordinary and external drift kriging) of local AMS quantiles or parameters of the fitted distribution. The performance of these regionalization techniques is then evaluated by cross-validation, where the local IDF from the long sub-hourly time series are considered the true reference. Based on the relative bias, rmse and correlation the best method is selected and used for the regionalization of the IDF curves in Germany. Different data products are fed in the regionalization methods to answer the following questions: are the disaggregated long time series useful in regionalizing sub-hourly IDF? Can space be traded for time (and vice versa) when regionalizing IDF? What is the best incorporation of different data sets for the regionalization of the IDF? Lastly, a bootstrap method is as well employed to account for the uncertainties in estimation intensity-duration extremes for the given return periods. </span></p>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1750 ◽  
Author(s):  
Muhammad Noor ◽  
Tarmizi Ismail ◽  
Eun-Sung Chung ◽  
Shamsuddin Shahid ◽  
Jang Sung

This study developed a methodological framework to update the rainfall intensity-duration-frequency (IDF) curves under climate change scenarios. A model output statistics (MOS) method is used to downscale the daily rainfall of general circulation models (GCMs), and an artificial neural network (ANN) is employed for the disaggregation of projected daily rainfall to hourly maximum rainfall, which is then used for the development of IDF curves. Finally, the 1st quartiles, medians, and 3rd quartiles of projected rainfall intensities are estimated for developing IDF curves with uncertainty level. Eight GCM simulations under two radiative concentration pathways (RCP) scenarios, namely, RCP 4.5 and RCP 8.5, are used in the proposed framework for the projection of IDF curves with related uncertainties for peninsular Malaysia. The projection of rainfall revealed an increase in the annual average rainfall throughout the present century. The comparison of the projected IDF curves for the period 2006–2099 with that obtained using GCM hindcasts for the based period (1971–2005) revealed an increase in rainfall intensity for shorter durations and a decrease for longer durations. The uncertainty in rainfall intensity for different return periods for shorter duration is found to be 2 to 6 times more compared to longer duration rainfall, which indicates that a large increase in rainfall intensity for short durations projected by GCMs is highly uncertain for peninsular Malaysia. The IDF curves developed in this study can be used for the planning of climate resilient urban water storm water management infrastructure in Peninsular Malaysia.


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 78
Author(s):  
Ena Gámez-Balmaceda ◽  
Alvaro López-Ramos ◽  
Luisa Martínez-Acosta ◽  
Juan Pablo Medrano-Barboza ◽  
John Freddy Remolina López ◽  
...  

Intensity–Duration–Frequency (IDF) curves describe the relationship between rainfall intensity, rainfall duration, and return period. They are commonly used in the design, planning and operation of hydrologic, hydraulic, and water resource systems. Considering the intense rainfall presence with flooding occurrences, limited data used to develop IDF curves, and importance to improve the IDF design for the Ensenada City in Baja California, this research study aims to investigate the use and combinations of pluviograph and daily records, to assess rain behavior around the city, and select a suitable method that provides the best results of IDF relationship, consequently updating the IDF relationship for the city for return periods of 10, 25, 50, and 100 years. The IDF relationship is determined through frequency analysis of rainfall observations. Also, annual maximum rainfall intensity for several duration and return periods has been analyzed according to the statistical distribution of Gumbel Extreme Value (GEV). Thus, Chen’s method was evaluated based on the depth-duration ratio (R) from the zone, and the development of the IDF relationship for the rain gauges stations was focused on estimating the most suitable (R) ratio; chosen from testing several methods and analyzing the rain in the region from California and Baja California. The determined values of the rain for one hour and return period of 2 years (P12) obtained were compared to the values of some cities in California and Baja California, with a range between 10 and 16.61 mm, and the values of the (R) ratio are in a range between 0.35 and 0.44; this range is close to the (R) ratio of 0.44 for one station in Tijuana, a city 100 km far from Ensenada. The values found here correspond to the rainfall characteristics of the zone; therefore, the method used in this study can be replicated to other semi-arid zones with the same rain characteristics. Finally, it is suggested that these results of the IDF relationship should be incorporated on the Norm of the State of Baja California as the recurrence update requires it upon recommendation. This study is the starting point to other studies that imply the calculation of a peak flow and evaluation of hydraulic structures as an input to help improve flood resilience in the city of Ensenada.


Sign in / Sign up

Export Citation Format

Share Document