scholarly journals Modelling and assessment of urban flood hazards based on rainfall intensity-duration-frequency curves reformation

2016 ◽  
Author(s):  
Reza Ghazavi ◽  
Ali Moafi Rabori ◽  
Mohsen Ahadnejad Reveshty

Abstract. Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormwater Management Model (SWMM). The accuracy of model simulations was confirmed based on the results of calibration. Design hyetographs in different return periods show that estimated rainfall depth via Sherman method are greater than other method except for 2-year return period. According to Ghahreman and Abkhezr method, decrease of runoff peak was 30, 39, 41 and 42 percent for 5-10-20 and 50-year return periods respectively, while runoff peak for 2-year return period was increased by 20 percent.

Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 78
Author(s):  
Ena Gámez-Balmaceda ◽  
Alvaro López-Ramos ◽  
Luisa Martínez-Acosta ◽  
Juan Pablo Medrano-Barboza ◽  
John Freddy Remolina López ◽  
...  

Intensity–Duration–Frequency (IDF) curves describe the relationship between rainfall intensity, rainfall duration, and return period. They are commonly used in the design, planning and operation of hydrologic, hydraulic, and water resource systems. Considering the intense rainfall presence with flooding occurrences, limited data used to develop IDF curves, and importance to improve the IDF design for the Ensenada City in Baja California, this research study aims to investigate the use and combinations of pluviograph and daily records, to assess rain behavior around the city, and select a suitable method that provides the best results of IDF relationship, consequently updating the IDF relationship for the city for return periods of 10, 25, 50, and 100 years. The IDF relationship is determined through frequency analysis of rainfall observations. Also, annual maximum rainfall intensity for several duration and return periods has been analyzed according to the statistical distribution of Gumbel Extreme Value (GEV). Thus, Chen’s method was evaluated based on the depth-duration ratio (R) from the zone, and the development of the IDF relationship for the rain gauges stations was focused on estimating the most suitable (R) ratio; chosen from testing several methods and analyzing the rain in the region from California and Baja California. The determined values of the rain for one hour and return period of 2 years (P12) obtained were compared to the values of some cities in California and Baja California, with a range between 10 and 16.61 mm, and the values of the (R) ratio are in a range between 0.35 and 0.44; this range is close to the (R) ratio of 0.44 for one station in Tijuana, a city 100 km far from Ensenada. The values found here correspond to the rainfall characteristics of the zone; therefore, the method used in this study can be replicated to other semi-arid zones with the same rain characteristics. Finally, it is suggested that these results of the IDF relationship should be incorporated on the Norm of the State of Baja California as the recurrence update requires it upon recommendation. This study is the starting point to other studies that imply the calculation of a peak flow and evaluation of hydraulic structures as an input to help improve flood resilience in the city of Ensenada.


2020 ◽  
Vol 17 (3) ◽  
pp. 223-228
Author(s):  
S.O. Oyegoke ◽  
A.S. Adebanjo ◽  
H.J. Ododo

With the large inter-annual variability of rainfall in Northern Nigeria, a zone subject to frequent dry spells which often result in severe and widespread droughts, the need for intense study of rainfall and accurate forecast of rainfall intensity duration frequency (IDF) curves cannot be over emphasized. The Intensity Duration Frequency relationship is a mathematical relationship between the rainfall intensity and rainfall duration for given return periods. Using a subset of the network of fifteen continuous auto recording rain gauges available in Northern Nigeria, a total of seven different time durations ranging from 12 minutes to 24 hours were developed for return periods of 2, 5, 10, 25, 50 and 100 years. The maximum data series so obtained was fitted to Gumbel’s Extreme Value Type 1 distribution. Linear Regression Analysis was then used to obtain the intensity-duration relationships for the various locations from which Intensity-Duration Frequency (IDF) curves were generated using Microsoft Excel for various return periods. Keywords:  Extreme rainfall, intensity, duration, frequency, Northern Nigeria


Author(s):  
J. O. Ehiorobo ◽  
O.C. Izinyon ◽  
R. I. Ilaboya

Rainfall Intensity-Duration-Frequency (IDF) relationship remains one of the mostly used tools in hydrology and water resources engineering, especially for planning, design and operations of water resource projects. IDF relationship can provide adequate information about the intensity of rainfall at different duration for various return periods. The focus of this research was to develop IDF curves for the prediction of rainfall intensity within the middle Niger River Basin (Lokoja and Ilorin) using annual maximum daily rainfall data. Forty (40) year’s annual maximum rainfall data ranging from 1974 to 2013 was employed for the study. To ascertain the data quality, selected preliminary analysis technique including; descriptive statistics, test of homogeneity and outlier detection test were employed. To compute the three hours rainfall intensity, the ratio of rainfall amount and duration was used while the popular Gumbel probability distribution model was employed to calculate the rainfall frequency factor. To assess the best fit model that can be employed to predict rainfall intensity for various return periods at ungauged locations, four empirical IDF equations, namely; Talbot, Bernard, Kimijima and Sherman equations were employed. The model with the least calculated sum of minimized root mean square error (RMSE) was adopted as the best fit empirical model. Results obtained revealed that the Talbot model was the best fit model for Ilorin and Lokoja with calculated sum of minimized error of 1.32170E-07 and 8.953636E-08. This model was thereafter employed to predict the rainfall intensity for different durations at 2, 5, 10, 25, 50 and 100yrs return periods respectively.


2008 ◽  
Vol 5 (6) ◽  
pp. 3419-3447 ◽  
Author(s):  
A. Viglione ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship. To better understand the interplay of the controlling factors we assume a simplified world with block rainfall, constant runoff coefficient and linear catchment response. We use an analytical derived flood frequency approach in which, following design practise, TP is defined as the return period of the intensity-duration-frequency (IDF) curve given storm duration and depth. Results suggest that the main control on the mapping of rainfall to flood return periods is the ratio of storm duration and catchment response time, as would be expected. In the simple world assumed in this work, TQ is always smaller or equal than TP of the associated storm, i.e. TQ/TP≤1. This is because of the difference in the selectiveness of the rectangular filters used to construct the IDF curves and the unit hydrograph (UH) together with the fact that different rectangular filters are used when evaluating the storm return periods. The critical storm duration that maximises TQ/TP is, in descending importance, a function of the catchment response time and the distribution of storm duration, while the maximum value of TQ/TP is mainly a function of the coefficient of variation of storm duration. The study provides the basis for future analyses, where more complex cases will be examined.


2009 ◽  
Vol 13 (2) ◽  
pp. 205-216 ◽  
Author(s):  
A. Viglione ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship. To better understand the interplay of the controlling factors we assume a simplified world with block rainfall, constant runoff coefficient and linear catchment response. We use an analytical derived flood frequency approach in which, following design practise, TP is defined as the return period of the intensity-duration-frequency (IDF) curve given storm duration and depth. Results suggest that the main control on the mapping of rainfall to flood return periods is the ratio of storm duration and catchment response time, as would be expected. In the simple world assumed in this work, TQ is always smaller or equal than TP of the associated storm, i.e., TQ/TP≤1. This is because of the difference in the selectiveness of the rectangular filters used to construct the IDF curves and the unit hydrograph (UH) together with the fact that different rectangular filters are used when evaluating the storm return periods. The critical storm duration that maximises TQ/TP is, in descending importance, a function of the catchment response time and the distribution of storm duration, while the maximum value of TQ/TP is mainly a function of the coefficient of variation of storm duration. The study provides the basis for future analyses, where more complex cases will be examined.


Author(s):  
Nizeyimana Jean Claude ◽  
Shanshan Lin ◽  
Ndayisenga Fabrice ◽  
Gratien Twagirayezu ◽  
Junaid Khan ◽  
...  

Due to the increase in the emission of greenhouse gases, the hydrologic cycle is being altered on the daily basis. This has affected the variations in relations of intensity, duration, and frequency of rainfall events. Intensity Duration Frequency (IDF) curves describe the relationship between rainfall intensity, rainfall duration and return period. IDF curves are one of the most often applied implements in water resource engineering, in areas such as for operating, planning and designing of water resource projects, or for numerous engineering projects aimed at controlling floods. In particular, IDF curves for precipitation answer problems of improper drainage systems or conditions and extreme characters of precipitation which are the main cause of floods in Nyabugogo catchment. This study aims to establish Rainfall IDF empirical equations, curves and hydrological discharge (predicted peak rate of runoff (Qlogy)) equations for eight Districts that will be used for designing an appropriate and sustainable hydraulic structures for controlling flood to reduce potential loss of human and aquatic life, degradation of water, air and soil quality and property damage and economic lessen caused by flood in Nyabugogo catchment. However Goodness of Fit tests revealed that Gumbel’s Extreme-Value Distribution method appears to have the most appropriate fit compared with Pearson type III distribution for validating the Intensity-Duration-Frequency curves and equations through the use of daily annual for each meteorological station. The findings of the study show that the intensity of rainfall increases with a decrease in rainfall duration. Additionally, a rainfall of every known duration will have a higher intensity if its return period is high, while the predicted peak rate of runoff (Qlogy) increases also with an increase in the intensity of rainfall.


2021 ◽  
Vol 13 (11) ◽  
pp. 2204
Author(s):  
Zhihua Zhu ◽  
Yueying Yang ◽  
Yanpeng Cai ◽  
Zhifeng Yang

Analyzing flooding in urban areas is a great challenge due to the lack of long-term rainfall records. This study hereby seeks to propose a modeling framework for urban flood analysis in ungauged drainage basins. A platform called “RainyDay” combined with a nine-year record of hourly, 0.1° remotely sensed rainfall data are used to generate extreme rainfall events. These events are used as inputs to a hydrological model. The comprehensive characteristics of urban flooding are reflected through the projection pursuit method. We simulate runoff for different return periods for a typical urban drainage basin. The combination of RainyDay and short-record remotely sensed rainfall can reproduce recent observed rainfall frequencies, which are relatively close to the design rainfall calculated by the intensity-duration-frequency formula. More specifically, the design rainfall is closer at high (higher than 20-yr) return period or long duration (longer than 6 h). Contrasting with the flood-simulated results under different return periods, RainyDay-based estimates may underestimate the flood characteristics under low return period or short duration scenarios, but they can reflect the characteristics with increasing duration or return period. The proposed modeling framework provides an alternative way to estimate the ensemble spread of rainfall and flood estimates rather than a single estimate value.


This article proposes a methodology for generating hourly rainfall from daily rainfall data. It was evolved as a tool for managing flood risks on Ziz catchment, by means of Intensity-duration-frequency curves (IDF) and designed hyetograph of Chicago. The study area is located in the south-eastern part of Morocco, and did not have a monitoring station for hourly rain measure, the methodomogy consist of determinating the rainfall intensity for 24 h using IDF, then estimating the hourly rainfall using Chicago formula, in order to assess the accuracy of the method the resulting hyetographs was introduced into the semi-distributed hydrological model HEC HMS to simulate hourly flow, which was compared to the observed one. The obtaining results exhibit that the observed value is positively correlated with those obtained by the above method, as shown by the correlation coefficient and the Nash-Sutcliffe. This approach can deal with instantaneous water management issues by tackling flood risks and providing an appropriate range of data for the dam’s management.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1943
Author(s):  
Rosario Balbastre-Soldevila ◽  
Rafael García-Bartual ◽  
Ignacio Andrés-Doménech

The two-parameter gamma function (G2P) design storm is a recent methodology used to obtain synthetic hyetographs especially developed for urban hydrology applications. Further analytical developments on the G2P design storm are presented herein, linking the rainfall convectivity n-index with the shape parameter of the design storm. This step can provide a useful basis for future easy-to-handle rainfall inputs in the context of regional urban drainage studies. A practical application is presented herein for the case of Valencia (Spain), based on high-resolution time series of rainfall intensity. The resulting design storm captures certain internal statistics and features observed in the fine-scale rainfall intensity historical records. On the other hand, a direct, simple method is formulated to derivate the design storm from the intensity–duration–frequency (IDF) curves, making use of the analytical relationship with the n-index.


Sign in / Sign up

Export Citation Format

Share Document