Vector Potential of Selected North American Mosquito Species for Rift Valley Fever Virus

1988 ◽  
Vol 38 (2) ◽  
pp. 440-446 ◽  
Author(s):  
Thomas P. Gargan ◽  
David J. Dohm ◽  
Michael J. Turell ◽  
Charles L. Bailey ◽  
Gary G. Clark
Author(s):  
Adel M. Gad ◽  
Mosaad M. Hassan ◽  
Sharif El Said ◽  
Mahmoud I. Moussa ◽  
Owen L. Wood

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1079
Author(s):  
Sarah Lumley ◽  
Laura Hunter ◽  
Kirsty Emery ◽  
Roger Hewson ◽  
Anthony R. Fooks ◽  
...  

Rift Valley fever virus (RVFV) causes a zoonotic mosquito-borne haemorrhagic disease that emerges to produce rapid large-scale outbreaks in livestock within sub-Saharan Africa. A range of mosquito species in Africa have been shown to transmit RVFV, and recent studies have assessed whether temperate mosquito species are also capable of transmission. In order to support vector competence studies, the ability to visualize virus localization in mosquito cells and tissue would enhance the understanding of the infection process within the mosquito body. Here, the application of in situ hybridization utilizing RNAscope® to detect RVFV infection within the mosquito species, Culex pipiens, derived from the United Kingdom was demonstrated. Extensive RVFV replication was detected in many tissues of the mosquito with the notable exception of the interior of ovarian follicles.


2017 ◽  
Author(s):  
Brittany L. Dodson ◽  
Elizabeth S. Andrews ◽  
Michael J. Turell ◽  
Jason L. Rasgon

AbstractInnovative tools are needed to alleviate the burden of mosquito-borne diseases, and strategies that target the pathogen instead of the mosquito are being considered. A possible tactic is the use of Wolbachia, a maternally inherited, endosymbiotic bacterium that can suppress diverse pathogens when introduced to naive mosquito species. We investigated effects of somatic Wolbachia (strain wAlbB) infection on Rift Valley fever virus (RVFV) in Culex tarsalis mosquitoes. When compared to Wolbachia-uninfected mosquitoes, there was no significant effect of Wolbachia infection on RVFV infection, dissemination, or transmission frequencies, nor on viral body or saliva titers. Within Wolbachia-infected mosquitoes, there was a modest negative correlation between RVFV body titers and Wolbachia density, suggesting that Wolbachia may suppress RVFV in a density-dependent manner in this mosquito species. These results are contrary to previous work in the same mosquito species, showing Wolbachia-induced enhancement of West Nile virus infection rates. Taken together, these results highlight the importance of exploring the breadth of phenotypes induced by Wolbachia.Author SummaryAn integrated vector management program utilizes several practices, including pesticide application and source reduction, to reduce mosquito populations. However, mosquitoes are developing resistance to some of these methods and new control approaches are needed. A novel technique involves the bacterium Wolbachia that lives naturally in many insects. Wolbachia can be transferred to uninfected mosquitoes and can block pathogen transmission to humans. Additionally, Wolbachia is maternally inherited, allowing it to spread quickly through uninfected field populations of mosquitoes. We studied the impacts of Wolbachia on Rift Valley fever virus (RVFV) in the naturally uninfected mosquito, Culex tarsalis. Wolbachia had no effects on the ability of Culex tarsalis to become infected with or transmit RVFV. High densities of Wolbachia were associated with no virus infection or low levels of virus, suggesting that Wolbachia might suppress RVFV at high densities. These results contrast with our previous study that showed Wolbachia enhances West Nile virus infection in Culex tarsalis. Together, these studies highlight the importance of studying Wolbachia effects on a variety of pathogens so that control methods are not impeded.


2015 ◽  
Vol 6 ◽  
Author(s):  
Natasha N. Gaudreault ◽  
Sabarish V. Indran ◽  
P. K. Bryant ◽  
Juergen A. Richt ◽  
William C. Wilson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul J. Wichgers Schreur ◽  
Rianka P. M. Vloet ◽  
Jet Kant ◽  
Lucien van Keulen ◽  
Jose L. Gonzales ◽  
...  

AbstractRift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that is pathogenic to ruminants and humans. The virus is endemic to Africa and the Arabian Peninsula where outbreaks are characterized by abortion storms and mortality of newborns, particularly in sheep herds. Vector competence experiments in laboratory settings have suggested that over 50 mosquito species are capable of transmitting RVFV. Transmission of mosquito-borne viruses in the field is however influenced by numerous factors, including population densities, blood feeding behavior, extrinsic incubation period, longevity of vectors, and viremia levels in vertebrate hosts. Animal models to study these important aspects of RVFV transmission are currently lacking. In the present work, RVFV was transmitted to European (Texel-swifter cross-breed) lambs by laboratory-reared Aedes aegypti mosquitoes that were infected either by membrane feeding on a virus-spiked blood meal or by feeding on lambs that developed viremia after intravenous inoculation of RVFV. Feeding of mosquitoes on viremic lambs resulted in strikingly higher infection rates as compared to membrane feeding. Subsequent transmission of RVFV from lamb to lamb by infected mosquitoes was highly efficient in both models. The animal models described here can be used to study mosquito-mediated transmission of RVFV among the major natural target species and to evaluate the efficacy of vaccines against mosquito-mediated RVFV infection.


2010 ◽  
Vol 47 (5) ◽  
pp. 884-889 ◽  
Author(s):  
Michael J. Turell ◽  
William C. Wilson ◽  
Kristine E. Bennett

2000 ◽  
Vol 81 (9) ◽  
pp. 2161-2166 ◽  
Author(s):  
A. Billecocq ◽  
M. Vazeille-Falcoz ◽  
F. Rodhain ◽  
M. Bouloy

Rift Valley fever virus (RVFV) is an arbovirus of the Bunyaviridae family, causing recurrent disease outbreaks in Africa. Natural vertebrate hosts include cattle and humans. Several mosquito species belonging to the Aedes and Culex generaact as vectors of this phlebovirus. To test whether pathogen-derived resistance against RVFV could be induced by expressing genomic sequences in mosquito cells, as has been shown for La Crosse and dengue 2 viruses, we generated various recombinant Semliki Forest viruses expressing the S segment (or its genes) in the genomic or antigenomic sense. Expression of the N but not the NSs gene interfered with the production of RVFV in mosquito cells and this phenomenon was RNA- but not protein-dependent. These results raise questions on the molecular mechanisms involved in virus resistance.


Sign in / Sign up

Export Citation Format

Share Document