Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

Author(s):  
Keith C. Corkwell ◽  
Mitchell M. Jackson ◽  
Daniel T. Daly
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1309
Author(s):  
María D. Redel-Macías ◽  
David E. Leiva-Candia ◽  
José A. Soriano ◽  
José M. Herreros ◽  
Antonio J. Cubero-Atienza ◽  
...  

Oxygenated fuels, in this case short carbon-chain alcohols, have been investigated as alternative fuels to power compression ignition engines. A major advantage of short-chain alcohols is that they can be produced from renewable resources, i.e., cultivated commodities or biomass-based biorefineries. However, before entering the market, the effects of short-chain alcohols on engine performance, exhaust emissions, noise and sound quality need to be understood. This work sheds light on the relationship between the physicochemical properties of the alcohol/diesel fuel blends (ethanol and 1-propanol) on engine performance, exhaust emissions and, for the first time, on noise and sound quality. It has been demonstrated that when the content of alcohol in blends increased, soot and soluble organic material emissions drastically decreased, mainly due to the increase of oxygen content in the fuel. Reduction in soot emissions combined with higher thermodynamic efficiency of alcohol fuels, with respect to diesel fuel, enable their utilization on compression ignition engines. There is also an improvement in the soot-NOx trade off, leading to large reductions on soot with a small effect on NOx emissions. The oxygen content within the fuel reduces CO and THC emissions at extra-urban driving operation conditions. However, hydrocarbons and CO emissions increased at urban driving conditions, due to the high heat of vaporization of the alcohol fuels which reduces cylinder temperature worsening fuel atomization, vaporization and mixing with air being more significant at lower cylinder temperature conditions (low engine loads and speeds). Similarly, the higher the presence of alcohol in the blend, the higher the noise emitted by the engine due to their low tendency to auto-ignition. The optimization of alcohol quantity and the calibration of engine control parameters (e.g., injection settings) which is out of the scope of this work, will be required to overcome noise emission penalty. Furthermore, under similar alcohol content in the blend (10% v/v), the use of propanol is preferred over ethanol, as it exhibits lower exhaust emissions and better sound quality than ethanol.


2016 ◽  
Vol 822 ◽  
pp. 183-189
Author(s):  
Alexandru Dobre ◽  
Constantin Pană ◽  
Nikolaos Cristian Nuțu ◽  
Niculae Negurescu ◽  
Alexandru Cernat

Alcohols begin to show a real interest for their use as fuel at compression ignition engines due to require reducing the pollutants emissions, especially NOx emission. Among the primary alcohols, butyl alcohol (butanol) is considered to be of great perspective in its use as fuel in diesel engines due to its properties close to those of diesel fuel. It is miscible with the diesel fuel and the achieved blend is stable. In paper are presented some aspects regarding the diesel engine’s fuelling with butanol and diesel fuel blends using the experimental research and numerical modelling. The use of the butanol as a fuel for diesel engine has led to the reducing NOx emissions with about 25% and the Brake Specific Energetic Consumption (BSEC) with about 5% at the full load and the maximum torque engine speed.


2005 ◽  
Author(s):  
Hidenori Hattori ◽  
Yoshiharu Yamaguchi ◽  
Yoichi Kataoka ◽  
Kazuo Kurata ◽  
Isao Konagaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document