End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines

Author(s):  
Mark P. B. Musculus ◽  
Thierry Lachaux ◽  
Lyle M. Pickett ◽  
Cherian A. Idicheria
Author(s):  
W Park ◽  
S Lee ◽  
S Choi ◽  
K Min

It is difficult to decrease the emissions of nitrogen oxides (NO x) and soot simultaneously in conventional diesel engines. Low-temperature combustion concepts have been studied in an effort to overcome this problem. Low-temperature combustion has the potential to reduce NO x and soot emissions, but it has many limitations, including narrow operating ranges, high carbon monoxide and hydrocarbon emissions, and difficulties with ignition control. Exhaust gas recirculation (EGR) stratification is another combustion concept used to reduce NO x and soot emissions simultaneously using the local non-uniformity of EGR gas instead of increasing the overall EGR rate. In this study, the EGR stratification concept was improved using computational fluid dynamics. First, a two-step piston was developed to maximize the stratified EGR effects by obtaining a favourable EGR distribution pattern and injecting fuel into the high-EGR region. Then, the possibility of combustion and emission control using stratified EGR was estimated. The ideally distributed EGR in the cylinder results showed that the region of locally high EGR effectively influences the combustion characteristics and, thus, horizontally and centrally stratified EGR has the potential to reduce the nitric oxide (NO x) and soot emissions at the same time. Engine simulation results also showed simultaneous reductions in the NO x and the soot emissions.


Author(s):  
Amit Jhalani ◽  
Dilip Sharma ◽  
Pushpendra Kumar Sharma ◽  
Digambar Singh ◽  
Sumit Jhalani ◽  
...  

Diesel engines are lean burn engines; hence CO and HC emissions in the exhaust are less likely to occur in substantial amounts. The emissions of serious concern in compression ignition engines are particulate matter and nitrogen oxides because of elevated temperature conditions of combustion. Hence the researchers have strived continuously to lower down the temperature of combustion in order to bring down the emissions from CI engines. This has been tried through premixed charge compression ignition, homogeneous charge compression ignition (HCCI), gasoline compression ignition and reactivity controlled compression ignition (RCCI). In this study, an attempt has been made to critically review the literature on low-temperature combustion conditions using various conventional and alternative fuels. The problems and challenges augmented with the strategies have also been described. Water-in-diesel emulsion technology has been discussed in detail. Most of the authors agree over the positive outcomes of water-diesel emulsion for both performance and emissions simultaneously.


Author(s):  
Prasad Divekar ◽  
Usman Asad ◽  
Xiaoye Han ◽  
Xiang Chen ◽  
Ming Zheng

Suitable cylinder charge preparation is deemed critical for the attainment of a highly homogeneous, diluted, and lean cylinder charge, which is shown to lower the flame temperature. The resultant low temperature combustion (LTC) can simultaneously reduce the NOx and soot emissions from diesel engines. This requires sophisticated coordination of multiple control systems for controlling the intake boost, exhaust gas recirculation (EGR), and fueling events. Additionally, the cylinder charge modulation becomes more complicated in the novel combustion concepts that apply port injection of low reactivity alcohol fuels to replace the diesel fuel partially or entirely. In this work, experiments have been conducted on a single cylinder research engine with diesel and ethanol fuels. The test platform is capable of independently controlling the intake boost, EGR rates, and fueling events. Effects of these control variables are evaluated with diesel direct injection and a combination of diesel direct injection and ethanol port injection. Data analyses are performed to establish the control requirements for stable operation at different engine load levels with the use of one or two fuels. The sensitivity of the combustion modes is thereby analyzed with regard to the boost, EGR, fuel types, and fueling strategies. Zero-dimensional cycle simulations have been conducted in parallel with the experiments to evaluate the operating requirements and operation zones of the LTC combustion modes. Correlations are generated between air–fuel ratio (λ), EGR rate, boost level, in-cylinder oxygen concentration, and load level using the experimental data and simulation results. Development of a real-time boost-EGR set-point determination to sustain the LTC mode at the varying engine load levels and fueling strategies is proposed.


Author(s):  
Prasad Divekar ◽  
Usman Asad ◽  
Xiaoye Han ◽  
Xiang Chen ◽  
Ming Zheng

Suitable cylinder charge preparation is deemed critical for the attainment of a highly homogeneous, diluted, and lean cylinder charge which is shown to lower the flame temperature. The resultant low temperature combustion (LTC) can simultaneously reduce the NOx and soot emissions from diesel engines. This requires sophisticated coordination of multiple control systems for controlling the intake boost, exhaust gas recirculation (EGR), and fueling events. Additionally, the cylinder charge modulation becomes more complicated in the novel combustion concepts that apply port injection of low reactivity alcohol fuels to replace the diesel fuel partially or entirely. In this work, experiments have been conducted on a single cylinder research engine with diesel and ethanol fuels. The test platform is capable of independently controlling the intake boost, EGR rates, and fuelling events. Effects of these control variables are evaluated with diesel direct injection and a combination of diesel direct injection and ethanol port injection. Data analyses are performed to establish the control requirements for stable operation at different engine load levels with the use of one or two fuels. The sensitivity of the combustion modes is thereby analyzed with regard to the boost, EGR, fuel types and fueling strategies. Zero-dimensional cycle simulations have been conducted in parallel with the experiments to evaluate the operating requirements and operation zones of the LTC combustion modes. Correlations are generated between air-fuel ratio (λ), EGR rate, boost level, in-cylinder oxygen concentration and load level using the experimental data and simulation results. Development of a real-time boost-EGR set-point determination to sustain the LTC mode at the varying engine load levels and fueling strategies is proposed.


Author(s):  
Kelvin Xie ◽  
Xiaoye Han ◽  
Graham T. Reader ◽  
Meiping Wang ◽  
Ming Zheng

A modern common-rail diesel engine was used to investigate hydrocarbon emissions under low temperature diesel combustion conditions. In this work, various EGR ratios and fuel mixing strategies were applied under a series of fixed-load conditions to progressively lower the flame temperature, which is verified by progressively reduced NOx emission. During the tests, the concentrations of total hydrocarbons, representative light hydrocarbon species (methane, acetylene, and ethylene), and hydrogen gas were measured with a set of emission analyzers, FTIR, and H2 mass-spectrometer. The trend for light hydrocarbon emissions was identified to be a function of both load and EGR ratio. Hydrogen gas can be emitted in significant quantities with the application of very high EGR. Under ultra-low NOx production conditions for medium and high load conditions, the light hydrocarbon species can account for the majority of hydrocarbon emissions.


Sign in / Sign up

Export Citation Format

Share Document