scholarly journals Applications of Approximate Optimal Control to Nonlinear Systems of Tracked Vehicle Suspensions

Author(s):  
Yan-Jun Liang ◽  
You-Jun Lu ◽  
De-Xin Gao ◽  
Zhong-Sheng Wang

AbstractTechnique of approximate optimal vibration control and simulation for vehicle active suspension systems are developed. Considered the nonlinear damping of springs, mechanical model and a nonlinear dynamic system for a class of tracked vehicle suspension vibration control are established and the corresponding system of state space form is described. To prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an approximate optimal vibration controller is designed, and an algorithm is presented for the vibration controller. Numerical simulation results illustrate the effectiveness of the proposed technique.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yan-Jun Liang ◽  
Shi-Liang Wu

Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.


Author(s):  
Amit Shukla ◽  
Jeong Hoi Koo

Nonlinear active suspension systems are very popular in the automotive applications. They include nonlinear stiffness and nonlinear damping elements. One of the types of damping element is a magneto-rheological fluid based damper which is receiving increased attention in the applications to the automotive suspension systems. Latest trends in suspension systems also include electronically controlled systems which provide advanced system performance and integration with various processes to improve vehicle ride comfort, handling and stability. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. These control bifurcations are different from the classical bifurcation where qualitative stability of the equilibrium point changes. Any nonlinear control system can also exhibit control bifurcations. In this paper, control bifurcations of the nonlinear active suspension system, modeled as a two degree of freedom system, are analyzed. It is shown that the system looses stability via Hopf bifurcation. Parametric control bifurcation analysis is conducted and results presented to highlight the significance of the design of control system for nonlinear active suspension system. A framework for the design of feedback using the parametric analysis for the control bifurcations is proposed and illustrated for the nonlinear active suspension system.


2008 ◽  
Vol 15 (5) ◽  
pp. 493-503 ◽  
Author(s):  
S. Hossein Sadati ◽  
Salar Malekzadeh ◽  
Masood Ghasemi

In this paper, an 8-DOF model including driver seat dynamics, subjected to random road disturbances is used in order to investigate the advantage of active over conventional passive suspension system. Force actuators are mounted parallel to the body suspensions and the driver seat suspension. An optimal control approach is taken in the active suspension used in the vehicle. The performance index for the optimal control design is a quantification of both ride comfort and road handling. To simulate the real road profile condition, stochastic inputs are applied. Due to practical limitations, not all the states of the system required for the state-feedback controller are measurable, and hence must be estimated with an observer. In this paper, to have the best estimation, an optimal Kalman observer is used. The simulation results indicate that an optimal observer-based controller causes both excellent ride comfort and road handling characteristics.


2013 ◽  
Vol 340 ◽  
pp. 631-635
Author(s):  
Yong Fa Qin ◽  
Jie Hua ◽  
Long Wei Geng

Vehicles with active suspension systems become more ride comfort and maneuverable stability, many types of active suspensions have been applied to passenger vehicles, but one of the shortcomings of an active susupension system is that the additional control power consumption is needed. The core issues of designing an active suspension system are to minimiaze vibration magnitute and control energy comsuption of the active suspension system. A new mathematic model for an active suspension system is established based on vehicle dynamics and modern control theory. An optimal control law is constructed through solving the Riccati equation, and then the transfer function is deduced to describe the relationship between the vetical velosity of the road roughness and the output of suspension system. Three typical parameters of vehicle ride comfort are researched, such as vertical acceleration of vehicle body, dynamic deflection of suspension system and dynamic deformation of tires. A case of a quarter vehicle model is studied by simulation to show that the proposed method of modeling and designing optimal controller are suitable to develop active suspension systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-Jun Fu ◽  
Bin Li ◽  
Xiao-Bin Ning ◽  
Wei-Dong Xie

In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation) for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP). Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR) approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass) and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.


2021 ◽  
Vol 69 (6) ◽  
pp. 485-498
Author(s):  
Felix Anhalt ◽  
Boris Lohmann

Abstract By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.


Sign in / Sign up

Export Citation Format

Share Document