High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct-Injection Spark-Ignition Engine

2011 ◽  
Vol 4 (1) ◽  
pp. 1469-1480 ◽  
Author(s):  
Mayank Mittal ◽  
David L.S. Hung ◽  
Guoming Zhu ◽  
Harold Schock
2019 ◽  
Vol 21 (4) ◽  
pp. 664-682
Author(s):  
Martin Theile ◽  
Martin Reißig ◽  
Egon Hassel ◽  
Dominique Thévenin ◽  
Martin Hofer ◽  
...  

This work summarizes the numerical analysis of the effect of early fuel injection on the charge motion in a direct injection spark ignition engine concerning cyclic fluctuations of the flow field. The combination of the scale-resolving turbulence model “Scale Adaptive Simulation” and post-processing routines for vortex trajectory visualization allows for a detailed insight into the temporal resolved and cycle-dependent behavior of the charge motion. In the first part, a simplified engine set-up is presented and used as a validation case to ensure correct behavior of the turbulence model and post-processing routines. In the second part, the computational fluid dynamics model of the real engine is introduced. The application of the proposed vortex tracking algorithm is shown, and a short discussion about the transient behavior of the charge motion in this engine set-up is given. The third part describes the analysis of the influence of the fuel injection on the charge motion at different engine speeds from 1000 to 3000 r/min and variations of the intake pressure from 1 to 2 bar. Finally, the impact on different flow field properties at possible ignition timings is discussed. Changes in mean flow field quantities as well as in aerodynamic fluctuations are found as a consequence of fuel injection.


2021 ◽  
Vol 22 (2) ◽  
pp. 455-463
Author(s):  
Fangxi Xie ◽  
Miaomiao Zhang ◽  
Yongzhen Wang ◽  
Yan Su ◽  
Wei Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document