Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels

2012 ◽  
Vol 5 (3) ◽  
pp. 1089-1108 ◽  
Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella
Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella

The current research focuses on creating a homogeneous charge compression ignition (HCCI) fuel index suitable for comparing different fuels for HCCI operation. One way to characterize a fuel is to use the auto-ignition temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of low temperature heat release (LTHR) that is closely connected to the ignition properties of the fuel. The purpose of this study was to map the AIT and the amount of LTHR of different oxygenated reference fuels in HCCI combustion at different cylinder pressures. Blends of n-heptane, iso-octane, and ethanol were tested in a cooperative fuels research (CFR) engine with a variable compression ratio. Five different inlet air temperatures ranging from 50 °C to 150 °C were used to achieve different cylinder pressures and the compression ratio was changed accordingly to keep a constant combustion phasing, CA50, of 3 ± 1 deg after top dead center (TDC). The experiments were carried out in lean operation with a constant equivalence ratio of 0.33 and with a constant engine speed of 600 rpm. The amount of ethanol needed to suppress the LTHR from different primary reference fuels (PRFs) was evaluated. The AIT and the amount of LTHR for different combinations of n-heptane, iso-octane, and ethanol were charted.


Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella

The current research focuses on creating an HCCI fuel index suitable for comparing different fuels for HCCI operation. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. The purpose of this study was to map the AIT and amount of LTHR of different oxygenated reference fuels in HCCI combustion at different cylinder pressures. Blends of n-heptane, iso-octane and ethanol were tested in a CFR engine with variable compression ratio. Five different inlet air temperatures ranging from 50°C to 150°C were used to achieve different cylinder pressures and the compression ratio was changed accordingly to keep a constant combustion phasing, CA50, of 3±1° after TDC. The experiments were carried out in lean operation with a constant equivalence ratio of 0.33 and with a constant engine speed of 600 rpm. The amount of ethanol needed to suppress LTHR from different PRFs was evaluated. The AIT and the amount of LTHR for different combinations of n-heptane, iso-octane and ethanol were charted.


2019 ◽  
Vol 22 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Yunchu Fan ◽  
Yaozong Duan ◽  
Dong Han ◽  
Xinqi Qiao ◽  
Zhen Huang

The anti-knock tendency of blends of butanol isomers and two gasoline surrogates (primary reference fuels and toluene primary reference fuels) was studied on a single-cylinder cooperative fuel research engine. The effects of butanol molecular structure (n-butanol, i-butanol, s-butanol and t-butanol) and butanol addition percentage on fuel research octane numbers were investigated. The experimental results revealed that butanol addition to either PRF80 or TPRF80 increased research octane numbers, and the research octane numbers of fuel blends showed higher linearity with the molar percentage than with the volumetric percentage of butanol addition. Furthermore, the research octane number boosting effects of butanol isomers were observed to change with the fuel compositions, that is, i-butanol >s-butanol >n-butanol >t-butanol for primary reference fuels and i-butanol >s-butanol >t-butanol >n-butanol for toluene primary reference fuels. In addition, butanol/primary reference fuel blends exhibited higher research octane numbers than butanol/toluene primary reference fuel blends. We thereafter tried to elucidate the underlying fuel combustion kinetics for the observed anti-knock quality of different butanol/gasoline surrogate blends. It was found that the measured research octane numbers of fuel blends showed the best correlation with the calculated ignition delay times at the thermodynamic condition of 770 K and 2 MPa, and the reaction sensitivity analysis in auto-ignition at this condition revealed that the H-abstraction reactions of butanol isomers by OH radical suppressed fuel reactivity, thus elevating the fuel research octane numbers when butanol was added to the gasoline surrogates. Compared with the butanol/primary reference fuel blends, the positive sensitive reactions related to n-heptane were of higher importance, while the inhibitive effects of sensitive reactions related to butanol and iso-octane decreased for the toluene primary reference fuel/butanol blends, thus leading to lower research octane numbers of the toluene primary reference fuel/butanol blends than those of the butanol/primary reference fuel blends.


2013 ◽  
Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella

2005 ◽  
Vol 140 (4) ◽  
pp. 267-286 ◽  
Author(s):  
Johan Andrae ◽  
David Johansson ◽  
Pehr Björnbom ◽  
Per Risberg ◽  
Gautam Kalghatgi

Sign in / Sign up

Export Citation Format

Share Document