Pressure Sensitivity of HCCI Auto-Ignition Temperature for Oxygenated Reference Fuels

Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella

The current research focuses on creating a homogeneous charge compression ignition (HCCI) fuel index suitable for comparing different fuels for HCCI operation. One way to characterize a fuel is to use the auto-ignition temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of low temperature heat release (LTHR) that is closely connected to the ignition properties of the fuel. The purpose of this study was to map the AIT and the amount of LTHR of different oxygenated reference fuels in HCCI combustion at different cylinder pressures. Blends of n-heptane, iso-octane, and ethanol were tested in a cooperative fuels research (CFR) engine with a variable compression ratio. Five different inlet air temperatures ranging from 50 °C to 150 °C were used to achieve different cylinder pressures and the compression ratio was changed accordingly to keep a constant combustion phasing, CA50, of 3 ± 1 deg after top dead center (TDC). The experiments were carried out in lean operation with a constant equivalence ratio of 0.33 and with a constant engine speed of 600 rpm. The amount of ethanol needed to suppress the LTHR from different primary reference fuels (PRFs) was evaluated. The AIT and the amount of LTHR for different combinations of n-heptane, iso-octane, and ethanol were charted.

Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella

The current research focuses on creating an HCCI fuel index suitable for comparing different fuels for HCCI operation. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. The purpose of this study was to map the AIT and amount of LTHR of different oxygenated reference fuels in HCCI combustion at different cylinder pressures. Blends of n-heptane, iso-octane and ethanol were tested in a CFR engine with variable compression ratio. Five different inlet air temperatures ranging from 50°C to 150°C were used to achieve different cylinder pressures and the compression ratio was changed accordingly to keep a constant combustion phasing, CA50, of 3±1° after TDC. The experiments were carried out in lean operation with a constant equivalence ratio of 0.33 and with a constant engine speed of 600 rpm. The amount of ethanol needed to suppress LTHR from different PRFs was evaluated. The AIT and the amount of LTHR for different combinations of n-heptane, iso-octane and ethanol were charted.


2012 ◽  
Vol 5 (3) ◽  
pp. 1089-1108 ◽  
Author(s):  
Ida Truedsson ◽  
Martin Tuner ◽  
Bengt Johansson ◽  
William Cannella

2014 ◽  
Vol 663 ◽  
pp. 26-33
Author(s):  
Y.H. Teoh ◽  
H.H. Masjuki ◽  
M.A. Kalam ◽  
Muhammad Afifi Amalina ◽  
H.G. How

This study investigated the effects of premixed diesel fuel on the auto-ignition characteristics in a light duty compression ignition engine. A partial homogeneous chargecompression ignition (HCCI) engine was modified from a single cylinder, four-stroke, direct injection compression ignition engine. The partial HCCI is achieved by injecting diesel fuel into the intake port of the engine, while maintaining diesel fuel injected in cylinder for combustion triggering. The auto-ignition of diesel fuel has been studied at various premixed ratios from 0 to 0.60, under engine speed of 1600 rpm and 20Nm load. The results for performance, emissions and combustion were compared with those achieved without premixed fuel. From the heat release rate (HRR) profile which was calculated from in-cylinder pressure, it is clearly observed that two-stage and three-stage ignition were occurred in some of the cases. Besides, the increases of premixed ratio to some extent have significantly reduced in NO emission.


2000 ◽  
Vol 1 (3) ◽  
pp. 281-289 ◽  
Author(s):  
J Kusaka ◽  
T Yamamoto ◽  
Y Daisho

The homogeneous charge compression ignition (HCCI) combustion has been attracting growing attention in recent years due to its potential for simultaneous improvement of exhaust gas emissions and fuel consumption in diesel engines. For practical application of HCCI to internal combustion (IC) engines, precise control of auto-ignition of pre-mixtures during the compression stroke is inevitable. This paper discusses the auto-ignition processes in an HCCI engine operated with n-heptane/air mixtures using a zero-dimensional combustion model including a detailed kinetics. The model proposed is validated first by a comparison between calculated and experimental pressure diagrams, and then the effects of initial charge conditions, compression ratio and excess air ratio on ignition and combustion are investigated. It was found from the parametric study that HCCI combustion of n-heptane/air mixtures is classified into three types of combustion: complete combustion, only low-temperature reaction and misfire, depending on the compression ratio and excess air ratio at which the engine is operated. Finally, the major paths of the HCCI reaction occurring in the engine cylinder were clarified by a sensitivity analysis of chemical reactions involved in the HCCI reaction scheme.


Sign in / Sign up

Export Citation Format

Share Document