pressure trace
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 146808742110655
Author(s):  
Jorge Pulpeiro González ◽  
Carrie M Hall ◽  
Christopher P Kolodziej

In internal combustion engine research, cylinder pressure measurements provide valuable information about the underlying thermodynamic and combustion processes, and are typically collected in ensembles of several 100 traces. Although in some particular fields of combustion research all traces are analyzed, in most cases only one trace is studied because analyzing all the traces is impractical due to the large number of collected samples. Instead, an ensemble-averaged pressure trace is commonly calculated and used for analysis. However, this pressure trace is highly smoothed and dynamic information is lost during the averaging process. With the average trace, pressure rise rates are lower and pressure oscillations such as the ones resulting from combustion knock are lost. In this work, a statistical method was developed to determine the “most representative cycle,” which is the cycle from the ensemble that has the pressure trace most representative of the engine operating condition. Eleven characteristic parameters are computed from each pressure trace and probabilistic distributions are obtained for each of the parameters using all the traces in the ensemble. Finally, the most representative cycle is selected by means of a cost function minimization. The benefits of this method are illustrated using experimental data from four very different engine platforms, under four different combustion modes and over a range of operating conditions.


2021 ◽  
pp. 146808742110442
Author(s):  
Sebastian Welscher ◽  
Mohammad Hossein Moradi ◽  
Antonino Vacca ◽  
Peter Bloch ◽  
Michael Grill ◽  
...  

Due to increasing climate awareness and the introduction of much stricter exhaust emission legislation the internal combustion engine technology faces major challenges. Although the development and state of technology of internal combustion engines generally reached a very high level over the last years those need to be improved even more. Combining water injection with a diesel engine, therefore, seems to be the next logical step in developing a highly efficient drive train for future mobility. To investigate these potentials, a comprehensive evaluation of water injection on the diesel engine was carried out. This study covers >560 individual operating points on the test bench. The tests were carried out on a single-cylinder derived from a Euro 6d four-cylinder passenger car with the port water injection. Furthermore, a detailed pressure trace analysis (PTA) was performed to evaluate various aspects regarding combustion, emission, etc. The results show no significant effects of water injection on the combustion process, but great potential for NOx reduction. It has been shown that with the use of water injection at water-to-fuel rates of 25%, 50%, and 100%, NOx reduction without deterioration of soot levels can be achieved in 62%, 40%, and 20% of the experiments, respectively. Furthermore, water injection in combination with EGR offers additional reduction in NOx emissions.


Author(s):  
Barbara Bonechi ◽  
Cristina Perinelli ◽  
Mario Gaeta ◽  
Alessandro Fabbrizio ◽  
Maurizio Petrelli ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6046
Author(s):  
Hu Wang ◽  
Xin Zhong ◽  
Tianyu Ma ◽  
Zunqing Zheng ◽  
Mingfa Yao

With the increase of information processing speed, more and more engine optimization work can be processed automatically. The quick-response closed-loop control method is becoming an urgent demand for the combustion control of modern internal combustion engines. In this paper, artificial neural network (ANN) and polynomial functions are used to predict the emission and engine performance based on seven parameters extracted from the in-cylinder pressure trace information of over 3000 cases. Based on the prediction model, the optimal combustion parameters are found with two different intelligent algorithms, including genetical algorithm and fish swarm algorithm. The results show that combination of quadratic function with genetical algorithm is able to obtain the appropriate combustion control parameters. Both engine emissions and thermal efficiency can be virtually predicted in a much faster way, such that enables a promising way to achieve fast and reliable closed-loop combustion control.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ali Wajdan ◽  
Magnus Reinsfelt Krogh ◽  
Manuel Villegas-Martinez ◽  
Per Steinar Halvorsen ◽  
Ole Jakob Elle ◽  
...  

AbstractMeasurements of the left ventricular (LV) pressure trace are rarely performed despite high clinical interest. We estimated the LV pressure trace for an individual heart by scaling the isovolumic, ejection and filling phases of a normalized, averaged LV pressure trace to the time-points of opening and closing of the aortic and mitral valves detected in the individual heart. We developed a signal processing algorithm that automatically detected the time-points of these valve events from the motion signal of a miniaturized accelerometer attached to the heart surface. Furthermore, the pressure trace was used in combination with measured displacement from the accelerometer to calculate the pressure–displacement loop area. The method was tested on data from 34 animals during different interventions. The accuracy of the accelerometer-detected valve events was very good with a median difference of 2 ms compared to valve events defined from hemodynamic reference recordings acquired simultaneously with the accelerometer. The average correlation coefficient between the estimated and measured LV pressure traces was r = 0.98. Finally, the LV pressure–displacement loop areas calculated using the estimated and measured pressure traces showed very good correlation (r = 0.98). Hence, the pressure–displacement loop area can be assessed solely from accelerometer recordings with very good accuracy.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 990 ◽  
Author(s):  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Navaneetha Krishnan Balakrishnan ◽  
Thanh Danh Le ◽  
Huu Tho Nguyen

Biodiesels from coconut and palm cooking oil are viable alternatives to diesel fuel due to their environmental sustainability and similar physicochemical properties compared to diesel. In the present study, these fuels were tested separately in a diesel engine by blending with fossil diesel in proportions of 10%, 20%, 30% and 40% by volume. Experiments were conducted under a constant brake mean effective pressure (BMEP) of 400 kPa and at 2000 rpm. The results revealed similarities in engine performance, emissions, combustion and engine block vibration for used palm cooking oil methyl ester (UPME) fuel blends and coconut methyl ester (CME) fuel blends. Most blends resulted in slight improvements in brake specific energy consumption (BSEC) and brake thermal efficiency (BTE). A maximum reduction of 54%, 89% and 16.8% in pollutant emissions of brake specific hydrocarbons (BSHC), brake specific carbon monoxide (BSCO) and brake specific nitrogen oxides (BSNOx), respectively, was observed with UPME and CME in the blends. The cylinder pressure profiles when UPME-diesel and CME-diesel blends were used were comparable to a standard diesel pressure trace, however, some deviations in peak pressure were also noticed. It was also apparent from the results that engine vibration was influenced by the type of methyl ester used and its blend composition. Notably, the rate of pressure increase was maintained within an acceptable limit when the engine was fueled with both of the methyl ester blends.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
S. Raviteja ◽  
P. A. Ramakrishna ◽  
A. Ramesh

Abstract Nitromethane has a stoichiometric air–fuel ratio of 1.7, which is 8.5 times lower than gasoline. For the same amount of air being drawn by the engine, more amount of nitromethane blends and hence more energy can be added. Methanol was used as a medium to mix nitromethane and gasoline, which are normally immiscible. Engine performance tests were carried out to study the effect of nitromethane addition to the methanol-gasoline blend. A large rise in engine torque and brake thermal efficiency (BTE) was obtained during the investigation. However, the brake specific fuel consumption (BSFC) also increased for the nitromethane blends. The engine parameters like spark timing, equivalence ratio, and compression ratio were optimized to further increase the engine power and also bring down the BSFC. A net torque improvement of 42%, BTE improvement of 35%, and BSFC rise of 9% were obtained by adding nitromethane and methanol in small fractions to gasoline. Combustion analysis was carried out using the cylinder pressure trace. High heat release rate and shorter combustion duration with nitromethane addition were observed. Emission measurements showed decrease in HC and CO emissions with nitromethane addition. However, a drastic rise in NO emissions was observed. Hence, it can be concluded that the specific power of small two-stroke spark ignition (SI) engines can be enhanced using nitromethane as a fuel additive to increase the payload of the unmanned aerial vehicles.


2020 ◽  
Vol 8 (3) ◽  
pp. 204 ◽  
Author(s):  
Haosheng Shen ◽  
Jundong Zhang ◽  
Baicheng Yang ◽  
Baozhu Jia

In this article, to meet the requirements of marine engine room simulator on both the simulation speed and simulation accuracy, a mean value engine model (MVEM) for the 7S80ME-C9.2 marine two-stroke diesel engine was developed and validated in the MATLAB/Simulink environment. In consideration of the significant influence of turbocharger compressor on both the engine steady state performance and transient response, a novel compressor model (mass flow rate and isentropic efficiency model) based on a previous study carried out by the first author was proposed with the aim of achieving satisfactory simulation accuracy within the whole engine operating envelope. The predictive and extrapolative capability of the proposed compressor model was validated by carrying out simulation experiments and analyzing the simulation results under steady state condition and during transient process. To make the traditional MVEM capable of predicting in-cylinder pressure trace, the cylinder pressure analytic model proposed by Eriksson and Andersson for the four-stroke SI (spark ignition) engine was adapted to the 7S80ME-C9.2 marine two-stroke diesel engine based on the characteristic of in-cylinder pressure trace of this type of engine and then coupled to the MVEM developed in this paper. Since there is no need to solve any differential equation as it is done in the 0-D model, the advantage of MVEM in running speed is not impaired. For achieving satisfactory simulation accuracy by using the analytic model, the model parameters were calibrated elaborately by using engine measured data and a 0-D model and the relevant tuning procedure was discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document