Cetane Number Determination by Advanced Fuel Ignition Delay Analysis in a New Constant Volume Combustion Chamber

Author(s):  
Philipp Seidenspinner ◽  
Martin Härtl ◽  
Thomas Wilharm ◽  
Georg Wachtmeister
Author(s):  
Yifeng Wu ◽  
Ronghua Huang ◽  
Chia-fon F. Lee

Effects of fuel and ambient gas temperature on the spray and combustion characteristics of soybean biodiesel were studied in a constant-volume combustion chamber. Four different fuels or fuel blends including B0, B20, B50 and B100 were investigated experimentally. The soot mass data were obtained via a new technique called forward illumination light extinction (FILE). The ambient gas temperature was varied from 700 K to 1200 K. To simulate the engine operating conditions, the ambient oxygen concentration and its density were kept at 21 % and 15 kg/m3, respectively. A higher peak pressure is found as the biodiesel content decreases. B20, B50 and B100 have a shorter ignition delay than B0 and the ignition delay decreases with increasing biodiesel content. The liquid penetration decreases with decreasing biodiesel content. Moreover, the integrated natural flame luminosity (INFL) increases with decreasing biodiesel content. Shorter flame (i.e., soot luminosity) duration and a longer delay between start of combustion (SOC) and the appearance of flame are found as the biodiesel content increases. The flame duration also increases with increasing ambient gas temperature for all fuels. Soot is lower and appears later at a lower ambient gas temperature, while it is burned out at around the same time. Near-zero soot mass was observed for all tested fuels at 700 K. A shorter soot formation process is observed for biodiesel fuels. The soot reduction using B20 and B50 is not obvious compared to B0 at a low temperature. But under the ordinary diesel engine operating condition at 1000 K, the soot reduction is significant. It is also found that the soot can be reduced by 60% and above when B100 is used in this study.


2018 ◽  
Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
John Hunter Mack

The ignition behavior of the fuel in non-premixed turbulent combustion applications such as diesel engines and gas turbines is dependent on the mixing rate of the injected fuel and the working fluid. In this study, three-dimensional modeling of hydrogen injection into a constant volume combustion chamber (CVCC) is used to investigate the correlation between the mixing rate and important parameters of non-premixed combustion, such as ignition delay. Mixedness is quantified using mean spatial variation, which reflects the homogeneity of the mixture, and mean scalar dissipation, which represents the local gradients of the scalar. The case studies include nitrogen and argon as working fluids; injection velocities and nozzle diameters are varied for comparison. For consistency, the injected mass is kept constant and the injection duration is adjusted accordingly. The results indicate that a strong correlation exists between ignition delay and the defined mixedness parameters. The cases with higher mixedness values lead to a shorter ignition delay and a higher maximum flame temperature. Changing the working fluid and injection parameters can effectively modify the mixedness, and consequently affect the ignition onset and flame properties.


Fuel ◽  
2017 ◽  
Vol 200 ◽  
pp. 564-575 ◽  
Author(s):  
Hubert Kuszewski ◽  
Artur Jaworski ◽  
Adam Ustrzycki ◽  
Kazimierz Lejda ◽  
Krzysztof Balawender ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document