The Influence of Mixedness on Ignition for Hydrogen Direct Injection in a Constant Volume Combustion Chamber
The ignition behavior of the fuel in non-premixed turbulent combustion applications such as diesel engines and gas turbines is dependent on the mixing rate of the injected fuel and the working fluid. In this study, three-dimensional modeling of hydrogen injection into a constant volume combustion chamber (CVCC) is used to investigate the correlation between the mixing rate and important parameters of non-premixed combustion, such as ignition delay. Mixedness is quantified using mean spatial variation, which reflects the homogeneity of the mixture, and mean scalar dissipation, which represents the local gradients of the scalar. The case studies include nitrogen and argon as working fluids; injection velocities and nozzle diameters are varied for comparison. For consistency, the injected mass is kept constant and the injection duration is adjusted accordingly. The results indicate that a strong correlation exists between ignition delay and the defined mixedness parameters. The cases with higher mixedness values lead to a shorter ignition delay and a higher maximum flame temperature. Changing the working fluid and injection parameters can effectively modify the mixedness, and consequently affect the ignition onset and flame properties.