Reformate Exhaust Gas Recirculation (REGR) Effect on Particulate Matter (PM), Soot Oxidation and Three Way Catalyst (TWC) Performance in Gasoline Direct Injection (GDI) Engines

2015 ◽  
Vol 9 (1) ◽  
pp. 305-314 ◽  
Author(s):  
Maria Bogarra-Macias ◽  
Jose M Martin Herreros-Arellano ◽  
Athanasios Tsolakis ◽  
Andrew P.E. York ◽  
Paul Millington
Author(s):  
James Sevik ◽  
Thomas Wallner ◽  
Michael Pamminger ◽  
Riccardo Scarcelli ◽  
Dan Singleton ◽  
...  

The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coil ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.


2018 ◽  
Vol 20 (8-9) ◽  
pp. 945-952
Author(s):  
Gurneesh S Jatana ◽  
Brian C Kaul

Dilute combustion offers efficiency gains in boosted gasoline direct injection engines both through knock-limit extension and thermodynamic advantages (i.e. the effect of γ on cycle efficiency), but is limited by cyclic variability at high dilution levels. Past studies have shown that the cycle-to-cycle dynamics are a combination of deterministic and stochastic effects. The deterministic causes of cyclic variations, which arise from feedback due to exhaust gas recirculation, imply the possibility of using active control strategies for dilution limit extension. While internal exhaust gas recirculation will largely provide a next-cycle effect (short-timescale feedback), the feedback of external exhaust gas recirculation will have an effect after a delay of several cycles (long timescale). Therefore, control strategies aiming to improve engine stability at dilution limit may have to account for both short- and long-timescale feedback pathways. This study shows the results of a study examining the extent to which variations in exhaust gas recirculation composition are preserved along the exhaust gas recirculation flow path and thus the relative importance and information content of the long-timescale feedback pathway. To characterize the filtering or retention of cycle-resolved feedback information, high-speed (1–5 kHz) CO2 concentration measurements were performed simultaneously at three different locations along the low-pressure external exhaust gas recirculation loop of a four-cylinder General Motors gasoline direct injection engine using a multiplexed two-color diode laser absorption spectroscopy sensor system during steady-state and transient engine operation at various exhaust gas recirculation levels. It was determined that cycle-resolved feedback propagates through internal residual gases but is filtered out by the low-pressure exhaust gas recirculation flow system and do not reach the intake manifold. Intermediate variations driven by flow rate and compositional changes are also distinguished and identified.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yuhyeok Jo ◽  
Kyunghan Min ◽  
Myoungho Sunwoo ◽  
Manbae Han

Abstract Low pressure cooled exhaust gas recirculation (LP-EGR) system has been widely adopted to improve energy efficiency in turbocharged gasoline direct injection (GDI) engines. In order to utilize complete beneficial effects of the LP-EGR, a technique capable of accurately observing the LP-EGR flow into the cylinder in real-time is a prerequisite. To precisely estimate the LP-EGR rate in real-time, this paper proposes artificial neural network (ANN) models and its implementation on a real-time embedded system. As inputs for the ANN models, 12 combustion parameters physically correlated with the LP-EGR in the combustion process are selected and calculated from the in-cylinder pressure. The ANN models for the real-time LP-EGR estimation were trained with the steady-state data of 30,000 cycles and their hyper-parameters were searched by a hyper-parameter optimization method. Moreover, a model-based design procedure is introduced to implement the optimized ANN models on the real-time embedded system. Since the proposed implementation performs the validation procedure for each process, it provides a systematic and seamless process for creating ANN models for real-time embedded systems. In real-time experiments under eight steady-state engine operating points, the embedded ANN models show the estimation performance with R2 of above 0.9716. The operation time of each ANN was less than 1.285 ms meaning that the target system can operate in real-time sufficiently with a mass-produced 32 bit microprocessor up to 256 MHz.


Sign in / Sign up

Export Citation Format

Share Document