Analysis of a Dual-Fuel Combustion Engine Fueled with Diesel Fuel and CNG in Transient Operating Conditions

Author(s):  
Ireneusz Pielecha ◽  
Krzysztof Wislocki ◽  
Wojciech Cieslik ◽  
Przemyslaw Borowski ◽  
Wojciech Bueschke ◽  
...  
2019 ◽  
Vol 21 (3) ◽  
pp. 484-496 ◽  
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while a diffusive dual-fuel combustion was performed at higher loads. The aim of the presented controller is to maintain the indicated mean effective pressure and the combustion phasing at a target value, and to keep the maximum pressure derivative under a limit to avoid engine damage in all the combustion modes by cyclically adapting the injection settings. Various tests were performed at steady-state conditions showing good abilities to fulfil the expected operating conditions but also to reject disturbances such as intake pressure or exhaust gas recirculation variations. Finally, the proposed control strategy was tested during a load transient resulting in a combustion switching-mode and the results exhibited the closed-loop potential for controlling such combustion concept.


Author(s):  
Adam Klingbeil ◽  
Seunghyuck Hong ◽  
Roy J. Primus

Experiments were conducted on a large bore, medium speed, single cylinder, diesel engine to investigate operation with substitution ratio of natural gas varying from 0 to 93% by energy. As reported in a previous publication [1], these data were used to validate an analytical methodology for predicting performance and emissions under a broad spectrum of energy substitution ratios. For this paper, these experimental data are further analyzed to better understand the performance and combustion behavior under natural gas substitution ratios of 0%, 60% and 93%. These results show that by transitioning from diesel to 60% dual-fuel (60% NG substitution ratio), an improvement in the NOx-efficiency trade-off was observed that represented a ∼3% improvement in efficiency at constant NOx. Further, the transition from 60% dual-fuel to 93% dual-fuel (93% NG substitution ratio) resulted in additional efficiency improvement with a simultaneous reduction in NOx emissions. The data suggest that this improvement can be attributed to the premixed nature of the high substitution ratio. Furthermore, the results show that high cycle-to-cycle variation was observed for the 93% dual-fuel combustion tests. Further analysis, along with diesel injection rate measurements, show that the observed extreme sensitivity of the combustion event can be attributed to critical parameters such as diesel fuel quantity and injection timing. Results suggest a better understanding of the relative importance of combustion system components and operating conditions in controlling cycle-to-cycle variation of combustion process.


Author(s):  
Hongsheng Guo ◽  
W. Stuart Neill ◽  
Brian Liko

Natural gas is an abundant and inexpensive fuel in North America. It produces lower greenhouse gas emissions than diesel fuel when burned in an internal combustion engine. It is also considered to be a clean fuel because it generates lower particulate matter emissions than diesel fuel during combustion. In this study, an experimental study was conducted to investigate the combustion and emissions performance of a natural gas – diesel dual fuel engine at low and medium loads. A single cylinder direct injection diesel engine was modified to operate as the dual fuel engine. The diesel fuel was directly injected into the cylinder, while natural gas was injected into the intake port. The operating conditions, such as engine speed, load, intake temperature and pressure, were well controlled during the experiment. The effect of natural gas fraction on energy efficiency, cylinder pressure, exhaust temperature, and combustion stability were recorded and analyzed. The emissions data, including particulate matter, nitric oxides, carbon monoxide, and methane at various natural gas fractions and operating conditions were also analyzed. The results showed that natural gas – diesel dual fuel combustion slightly decreased brake thermal efficiency at low and medium load conditions and significantly reduced carbon dioxide and particulate matter emissions. Methane and NOx emissions increased in dual fuel combustion mode compared to diesel operation. The variation of carbon monoxide emissions in dual fuel mode depended on load and speed conditions.


2021 ◽  
pp. 146808742110419
Author(s):  
Prabhat R Jha ◽  
Kendyl R Partridge ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

In this study, cyclic variations in dual fuel combustion with diesel ignition of three different low reactivity fuels (methane, propane, and gasoline) are examined under identical operating conditions. Experiments were performed on a single cylinder research engine (SCRE) at a low load of 3.3 bar brake mean effective pressure (BMEP). The start of injection (SOI) of diesel was varied from 280 to 330 absolute crank angle degrees (CAD). Engine speed, rail pressure, and boost pressure were held constant at 1500 rpm, 500 bar, and 1.5 bar, respectively. The energy substituted by the low reactivity fuel was fixed at 80% of the total energy input. It was found that diesel-methane (DM) and diesel-propane (DP) combustion were affected by diesel mixing to a greater extent than diesel-gasoline (DG) combustion due to the higher reactivity of gasoline. The magnitude of low temperature heat release was greatest for DG combustion followed by DM and DP combustion for all SOIs. The ignition delay for DG combustion was the shortest, followed by DM and DP combustion. DM and DP combustion exhibited more cyclic variations than DG combustion. Cyclic variations decreased for DM and DP combustion when SOI was advanced; however, DG combustion cyclic variations remained essentially constant for all SOIs. Earlier SOIs (280, 290, 300, and 310 CAD) for DM and (280, 290, and 300 CAD) for DP combustion indicated some prior-cycle effects on the combustion and IMEP (i.e. some level of determinism).


Author(s):  
Karthik Nithyanandan ◽  
Yilu Lin ◽  
Robert Donahue ◽  
Xiangyu Meng ◽  
Yuanxu Li ◽  
...  

This paper presents the chemical composition, oxidation reactivity and nanostructural characteristics of particulate matter (PM) produced by a diesel engine operating with diesel/compressed natural gas (CNG) dual-fuel combustion. Raw, undiluted soot samples from pure diesel, 40% CNG, and 70% CNG (energy-based substitution rate) combustion were collected from the exhaust pipe. Engine operating conditions were held at 1200 RPM and 20 mg/cycle baseline load. For dual-fuel operation, split diesel injection (two injections) was used as the pilot, and CNG was injected into the intake manifold. First, soot oxidation reactivity was characterized using thermogravimetric analysis (TGA). Carbon, hydrogen, and nitrogen weight fractions were obtained using elemental analysis to measure soot aging. Transmission electron microscopy (TEM) was then used to determine the diameter of the spherules, and the morphology of soot agglomerates. It was found that soot reactivity increased with increasing CNG content. TEM images revealed a higher variation in particle diameter with increasing CNG substitution. High resolution TEM (HRTEM) images showed that CNG70 soot displayed features of immature soot particles. The enhanced reactivity could also be due to more active sites available in CNG soot, as well as the CNG soot being immature. Under this test condition and engine configuration, it can be concluded that the use of CNG affects the morphology and nanostructure of PM, and hence the oxidation reactivity of the soot.


Sign in / Sign up

Export Citation Format

Share Document