scholarly journals Closed-loop control of a dual-fuel engine working with different combustion modes using in-cylinder pressure feedback

2019 ◽  
Vol 21 (3) ◽  
pp. 484-496 ◽  
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while a diffusive dual-fuel combustion was performed at higher loads. The aim of the presented controller is to maintain the indicated mean effective pressure and the combustion phasing at a target value, and to keep the maximum pressure derivative under a limit to avoid engine damage in all the combustion modes by cyclically adapting the injection settings. Various tests were performed at steady-state conditions showing good abilities to fulfil the expected operating conditions but also to reject disturbances such as intake pressure or exhaust gas recirculation variations. Finally, the proposed control strategy was tested during a load transient resulting in a combustion switching-mode and the results exhibited the closed-loop potential for controlling such combustion concept.

2016 ◽  
Author(s):  
Ireneusz Pielecha ◽  
Krzysztof Wislocki ◽  
Wojciech Cieslik ◽  
Przemyslaw Borowski ◽  
Wojciech Bueschke ◽  
...  

2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


2014 ◽  
Vol 113 ◽  
pp. 722-733 ◽  
Author(s):  
Binbin Yang ◽  
Mingfa Yao ◽  
Wai K. Cheng ◽  
Yu Li ◽  
Zunqing Zheng ◽  
...  

2021 ◽  
pp. 146808742110419
Author(s):  
Prabhat R Jha ◽  
Kendyl R Partridge ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

In this study, cyclic variations in dual fuel combustion with diesel ignition of three different low reactivity fuels (methane, propane, and gasoline) are examined under identical operating conditions. Experiments were performed on a single cylinder research engine (SCRE) at a low load of 3.3 bar brake mean effective pressure (BMEP). The start of injection (SOI) of diesel was varied from 280 to 330 absolute crank angle degrees (CAD). Engine speed, rail pressure, and boost pressure were held constant at 1500 rpm, 500 bar, and 1.5 bar, respectively. The energy substituted by the low reactivity fuel was fixed at 80% of the total energy input. It was found that diesel-methane (DM) and diesel-propane (DP) combustion were affected by diesel mixing to a greater extent than diesel-gasoline (DG) combustion due to the higher reactivity of gasoline. The magnitude of low temperature heat release was greatest for DG combustion followed by DM and DP combustion for all SOIs. The ignition delay for DG combustion was the shortest, followed by DM and DP combustion. DM and DP combustion exhibited more cyclic variations than DG combustion. Cyclic variations decreased for DM and DP combustion when SOI was advanced; however, DG combustion cyclic variations remained essentially constant for all SOIs. Earlier SOIs (280, 290, 300, and 310 CAD) for DM and (280, 290, and 300 CAD) for DP combustion indicated some prior-cycle effects on the combustion and IMEP (i.e. some level of determinism).


Author(s):  
Karthik Nithyanandan ◽  
Yilu Lin ◽  
Robert Donahue ◽  
Xiangyu Meng ◽  
Yuanxu Li ◽  
...  

This paper presents the chemical composition, oxidation reactivity and nanostructural characteristics of particulate matter (PM) produced by a diesel engine operating with diesel/compressed natural gas (CNG) dual-fuel combustion. Raw, undiluted soot samples from pure diesel, 40% CNG, and 70% CNG (energy-based substitution rate) combustion were collected from the exhaust pipe. Engine operating conditions were held at 1200 RPM and 20 mg/cycle baseline load. For dual-fuel operation, split diesel injection (two injections) was used as the pilot, and CNG was injected into the intake manifold. First, soot oxidation reactivity was characterized using thermogravimetric analysis (TGA). Carbon, hydrogen, and nitrogen weight fractions were obtained using elemental analysis to measure soot aging. Transmission electron microscopy (TEM) was then used to determine the diameter of the spherules, and the morphology of soot agglomerates. It was found that soot reactivity increased with increasing CNG content. TEM images revealed a higher variation in particle diameter with increasing CNG substitution. High resolution TEM (HRTEM) images showed that CNG70 soot displayed features of immature soot particles. The enhanced reactivity could also be due to more active sites available in CNG soot, as well as the CNG soot being immature. Under this test condition and engine configuration, it can be concluded that the use of CNG affects the morphology and nanostructure of PM, and hence the oxidation reactivity of the soot.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Sreenivasa Rao Gubba ◽  
Ravichandra S. Jupudi ◽  
Shyam Sundar Pasunurthi ◽  
Sameera D. Wijeyakulasuriya ◽  
Roy J. Primus ◽  
...  

In an earlier publication (Jupudi et al., 2016, “Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines,” SAE Paper No. 2016-01-0798), the authors compared numerical predictions of the mean cylinder pressure of diesel and dual-fuel combustion, to that of measured pressure data from a medium-speed, large-bore engine. In these earlier comparisons, measured data from a flush-mounted in-cylinder pressure transducer showed notable and repeatable pressure oscillations which were not evident in the mean cylinder pressure predictions from computational fluid dynamics (CFD). In this paper, the authors present a methodology for predicting and reporting the local cylinder pressure consistent with that of a measurement location. Such predictions for large-bore, medium-speed engine operation demonstrate pressure oscillations in accordance with those measured. The temporal occurrences of notable pressure oscillations were during the start of combustion and around the time of maximum cylinder pressure. With appropriate resolutions in time steps and mesh sizes, the local cell static pressure predicted for the transducer location showed oscillations in both diesel and dual-fuel combustion modes which agreed with those observed in the experimental data. Fast Fourier transform (FFT) analysis on both experimental and calculated pressure traces revealed that the CFD predictions successfully captured both the amplitude and frequency range of the oscillations. Resolving propagating pressure waves with the smaller time steps and grid sizes necessary to achieve these results required a significant increase in computer resources.


Sign in / Sign up

Export Citation Format

Share Document