Impact of low reactivity fuel type on low load combustion, emissions, and cyclic variations of diesel-ignited dual fuel combustion

2021 ◽  
pp. 146808742110419
Author(s):  
Prabhat R Jha ◽  
Kendyl R Partridge ◽  
Sundar R Krishnan ◽  
Kalyan K Srinivasan

In this study, cyclic variations in dual fuel combustion with diesel ignition of three different low reactivity fuels (methane, propane, and gasoline) are examined under identical operating conditions. Experiments were performed on a single cylinder research engine (SCRE) at a low load of 3.3 bar brake mean effective pressure (BMEP). The start of injection (SOI) of diesel was varied from 280 to 330 absolute crank angle degrees (CAD). Engine speed, rail pressure, and boost pressure were held constant at 1500 rpm, 500 bar, and 1.5 bar, respectively. The energy substituted by the low reactivity fuel was fixed at 80% of the total energy input. It was found that diesel-methane (DM) and diesel-propane (DP) combustion were affected by diesel mixing to a greater extent than diesel-gasoline (DG) combustion due to the higher reactivity of gasoline. The magnitude of low temperature heat release was greatest for DG combustion followed by DM and DP combustion for all SOIs. The ignition delay for DG combustion was the shortest, followed by DM and DP combustion. DM and DP combustion exhibited more cyclic variations than DG combustion. Cyclic variations decreased for DM and DP combustion when SOI was advanced; however, DG combustion cyclic variations remained essentially constant for all SOIs. Earlier SOIs (280, 290, 300, and 310 CAD) for DM and (280, 290, and 300 CAD) for DP combustion indicated some prior-cycle effects on the combustion and IMEP (i.e. some level of determinism).

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
A. C. Polk ◽  
C. M. Gibson ◽  
N. T. Shoemaker ◽  
K. K. Srinivasan ◽  
S. R. Krishnan

Dual fuel engine combustion utilizes a high-cetane fuel to initiate combustion of a low-cetane fuel. The performance and emissions benefits (low NOx and soot emissions) of dual fuel combustion are well-known. Ignition delay (ID) of the injected high-cetane fuel plays a critical role in quality of the dual fuel combustion process. This paper presents experimental analyses of the ID behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant engine speed (1800 rev/min) using a four-cylinder direct injection diesel engine with the stock electronic conversion unit (ECU) and a wastegated turbocharger. First, the effects of fuel–air equivalence ratios (Фpilot ∼ 0.2–0.6 and Фoverall ∼ 0.2–0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bars) on IDs were investigated. With constant Фpilot (>0.5), increasing Фoverall with propane initially decreased ID but eventually led to premature propane auto-ignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Фoverall (at constant Фpilot) more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear trend (initially increasing and later decreasing) at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID), defined as the separation between the start of injection (SOI) and the location of 50% of the cumulative heat release, was also shown to be a useful metric to understand the influence of ID on dual fuel combustion. Dual fuel ID is profoundly affected by the overall equivalence ratio, pilot fuel quantity, BMEP, and PES. At high equivalence ratios, IDs can be quite short, and beyond a certain limit, can lead to premature auto-igniton of the low-cetane fuel (especially for a reactive fuel like propane). Therefore, it is important to quantify dual fuel ID behavior over a range of engine operating conditions.


Author(s):  
A. C. Polk ◽  
C. M. Gibson ◽  
N. T. Shoemaker ◽  
K. K. Srinivasan ◽  
S. R. Krishnan

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Φpilot ∼ 0.2–0.6 and Φoverall ∼ 0.2–0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Φpilot (> 0.5), increasing Φoverall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Φoverall (at constant Φpilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.


2019 ◽  
Vol 21 (3) ◽  
pp. 484-496 ◽  
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while a diffusive dual-fuel combustion was performed at higher loads. The aim of the presented controller is to maintain the indicated mean effective pressure and the combustion phasing at a target value, and to keep the maximum pressure derivative under a limit to avoid engine damage in all the combustion modes by cyclically adapting the injection settings. Various tests were performed at steady-state conditions showing good abilities to fulfil the expected operating conditions but also to reject disturbances such as intake pressure or exhaust gas recirculation variations. Finally, the proposed control strategy was tested during a load transient resulting in a combustion switching-mode and the results exhibited the closed-loop potential for controlling such combustion concept.


Author(s):  
Sascha Andree ◽  
Dmitry Goryntsev ◽  
Martin Theile ◽  
Björn Henke ◽  
Karsten Schleef ◽  
...  

Abstract The simulation of a diesel natural gas dual fuel combustion process is the topic of this paper. Based on a detailed chemical reaction mechanism, which was applied for such a dual fuel combustion, the complete internal combustion engine process was simulated. Two single fuel combustion reaction mechanisms from literature were merged, to consider the simultaneous reaction paths of diesel and natural gas. N-heptane was chosen as a surrogate for diesel. The chemical reaction mechanisms are solved by applying a tabulation method using the software tool AVL Tabkin™. In combination with a Flamelet Generated Manifold (FGM) combustion model, this leads to a reduction of computational effort compared to a direct solving of the reaction mechanism, because of a decoupling of chemistry and flow calculations. Turbulence was modelled using an unsteady Reynolds-Averaged Navier Stokes (URANS) model. In comparison to conventional combustion models, this approach allows for detailed investigations of the complex ignition process of the dual fuel combustion process. The unexpected inversely proportional relationship between start of injection (SOI) and start of combustion (SOC), a later start of injection makes for an earlier combustion of the main load, is only one of these interesting combustion phenomena, which can now be analyzed in detail. Further investigations are done for different engine load points and multiple pilot injection strategies. The simulation results are confirmed by experimental measurements at a medium speed dual fuel single cylinder research engine.


Author(s):  
U. Dwivedi ◽  
C. D. Carpenter ◽  
E. S. Guerry ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
...  

Diesel-ignited gasoline dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a port-fuel injector. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar indicated mean effective pressure (IMEP), and a constant gasoline energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engine-out indicated specific nitrogen oxide emissions (ISNOx), indicated specific hydrocarbon emissions (ISHC), indicated specific carbon monoxide emissions (ISCO), and smoke emissions. Advancing SOI from 30 degrees before top dead center (DBTDC) to 60 DBTDC reduced ISNOx from 14 g/kW h to less than 0.1 g/kW h; further advancement of SOI did not yield significant ISNOx reduction. A fundamental change was observed from heterogeneous combustion at 30 DBTDC to “premixed enough” combustion at 50–80 DBTDC and finally to well-mixed diesel-assisted gasoline homogeneous charge compression ignition (HCCI)-like combustion at 170 DBTDC. Smoke emissions were less than 0.1 filter smoke number (FSN) at all SOIs, while ISHC and ISCO were in the range of 8–20 g/kW h, with the earliest SOIs yielding very high values. Indicated fuel conversion efficiencies were ∼ 40–42.5%. An injection pressure sweep from 200 to 1300 bar at 50 DBTDC SOI and 1.5 bar intake boost showed that very low injection pressures lead to more heterogeneous combustion and higher ISNOx and ISCO emissions, while smoke and ISHC emissions remained unaffected. A boost pressure sweep from 1.1 to 1.8 bar at 50 DBTDC SOI and 500 bar rail pressure showed very rapid combustion for the lowest boost conditions, leading to high pressure rise rates, higher ISNOx emissions, and lower ISCO emissions, while smoke and ISHC emissions remained unaffected by boost pressure variations.


Author(s):  
Xiangyu Meng ◽  
Wuqiang Long ◽  
Yihui Zhou ◽  
Mingshu Bi ◽  
Chia-Fon F. Lee

Because of the potential to reduce NOx and PM emissions simultaneously and the utilization of biofuel, diesel/compressed natural gas (CNG) dual-fuel combustion mode with port injection of CNG and direct injection of diesel has been widely studied. While in comparison with conventional diesel combustion mode, the dual-fuel combustion mode generally leads lower thermal efficiency, especially at low and medium load, and higher carbon monoxide (CO) and total hydrocarbons (THC) emissions. In this work, n-butanol was blended with diesel as the pilot fuel to explore the possibility to improve the performance and emissions of dual-fuel combustion mode with CNG. Various pilot fuels of B0 (pure diesel), B10 (90% diesel/10% n-butanol by volume basis), B20 (80% diesel/20% n-butanol) and B30 (70% diesel/30% n-butanol) were compared at the CNG substitution rate of 70% by energy basis under the engine speeds of 1400 and 1800 rpm. The experiments were carried out by sweeping a wide range of pilot fuel start of injection timings based on the same total input energy including pilot fuel and CNG. As n-butanol was added into the pilot fuel, the pilot fuel/CNG/air mixture tends to be more homogeneous. The results showed that for the engine speed of 1400 rpm, pilot fuel with n-butanol addition leads to a slightly lower indicated thermal efficiency (ITE). B30 reveals much lower NOx emission and slightly higher THC emissions. For the engine speed of 1800 rpm, B20 can improve ITE and decrease the NOx and THC emissions simultaneously relative to B0.


Author(s):  
Karthik Nithyanandan ◽  
Yilu Lin ◽  
Robert Donahue ◽  
Xiangyu Meng ◽  
Yuanxu Li ◽  
...  

This paper presents the chemical composition, oxidation reactivity and nanostructural characteristics of particulate matter (PM) produced by a diesel engine operating with diesel/compressed natural gas (CNG) dual-fuel combustion. Raw, undiluted soot samples from pure diesel, 40% CNG, and 70% CNG (energy-based substitution rate) combustion were collected from the exhaust pipe. Engine operating conditions were held at 1200 RPM and 20 mg/cycle baseline load. For dual-fuel operation, split diesel injection (two injections) was used as the pilot, and CNG was injected into the intake manifold. First, soot oxidation reactivity was characterized using thermogravimetric analysis (TGA). Carbon, hydrogen, and nitrogen weight fractions were obtained using elemental analysis to measure soot aging. Transmission electron microscopy (TEM) was then used to determine the diameter of the spherules, and the morphology of soot agglomerates. It was found that soot reactivity increased with increasing CNG content. TEM images revealed a higher variation in particle diameter with increasing CNG substitution. High resolution TEM (HRTEM) images showed that CNG70 soot displayed features of immature soot particles. The enhanced reactivity could also be due to more active sites available in CNG soot, as well as the CNG soot being immature. Under this test condition and engine configuration, it can be concluded that the use of CNG affects the morphology and nanostructure of PM, and hence the oxidation reactivity of the soot.


Author(s):  
Xiangyu Meng ◽  
Yuanxu Li ◽  
Karthik Nithyanandan ◽  
Wuqiang Long ◽  
Chia-Fon F. Lee

Dual-fuel combustion mode with direct injection of diesel as the pilot fuel and port injection of compressed natural gas (CNG) in compression ignition (CI) engines has been widely investigated to comply with the latest emission regulations. The diesel-CNG dual-fuel combustion mode shows some potential to decrease NOx and soot emissions simultaneously, while it reveals a lower thermal efficiency compared to the pure diesel combustion mode under low load condition. The purpose of the current study is to investigate the possibility of using diesel blended with 1-butanol as the pilot fuel to enhance the engine performance and reduce emissions. Three pilot fuels — B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with the CNG substitution rates of 50% and 80% were compared at an engine speed of 1200 rpm. The experiments were conducted by sweeping the pilot fuel injection timing from −3 to −18 ° CA ATDC with an equivalent total energy (∼5 bar IMEP). The results illustrated that, for the 50% CNG substitution rate, the dual-fuel operation mode revealed a higher indicated thermal efficiency (ITE) under low load conditions, and B10 can significantly improve the ITE due to the shorter combustion duration. The emission results of B10 showed that it obtained lower THC and CO emissions, but a slightly higher NOx emission. For the 80% CNG substitution rate, the results presented lower ITE, higher THC and lower NOx emissions, comparatively.


Sign in / Sign up

Export Citation Format

Share Document