scholarly journals Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

2017 ◽  
Vol 10 (4) ◽  
pp. 1443-1453 ◽  
Author(s):  
Mohammad Izadi Najafabadi ◽  
Slavey Tanov ◽  
Hua Wang ◽  
Bart Somers ◽  
Bengt Johansson ◽  
...  
2006 ◽  
Author(s):  
Pranay Mahendra ◽  
Michael G. Olsen

Recently the automotive industry has been using superchargers to boost the power generated by the engine, but the noise generated by these superchargers is of great concern. The noise generated during the working of the supercharger is primarily a fluid mechanics phenomenon. Particle Image Velocimetry (PIV) was used to study air flow characteristics of a positive displacement supercharger with an emphasis on gaining insights into strategies for noise reduction. PIV was used to measure the instantaneous and ensemble-averaged velocity fields of the flow at the outlet of the supercharger as a function of blade position, allowing for visualization of the flow as it leave the blades. The preliminary results show that the flow exits the supercharger as a high speed jet at the end closer to the pulley end, and the flow varies with the change in blade position.


Author(s):  
Georg Baumgartner ◽  
Lorenz R. Boeck ◽  
Thomas Sattelmayer

Sustainable power generation resulting in low pollutant emissions, such as CO2 and NOx, poses a very challenging task in the near future. Premixed combustion of hydrogen-rich fuels in gas turbines is a promising approach to cope with ever more stringent regulations on emission levels. This method, however, involves the risk of flame flashback from the desired flame position into the premixing section, leading to catastrophic failure of the machine components that are not designed for such high temperatures. The objective of the current study was to visualize and describe the transition from stable flame to flashback in a generic H2–air combustion system and develop a physics-based model for the description of the transition. In order to achieve the high temporal and spatial resolution required for capturing the involved effects, high-speed particle image velocimetry (PIV) and high-speed planar laser-induced fluorescence (PLIF) were employed. In order to characterize the interaction of the flame with the flow in detail, both measurement techniques were applied to very small fields-of-view using (UV) long-distance microscopes. The repetition rates were 20 kHz for PLIF and 3 kHz for PIV, respectively. During both the PLIF and the PIV measurements, the flame's OH*-chemiluminescence was captured from a perspective perpendicular to that of the PLIF/PIV camera for further flame characterization. The microscopic measurements revealed that there is a negligible influence of the unconfined flame on the incoming burner flow in stable mode. Upon approaching the flashback conditions, however, the velocity profile of the burner flow is distinctly distorted by the presence of the flame inside the premixing duct. The flow directly upstream of the flame is retarded and deflected around the leading flame tip. Based on the effects observed in the experiments, a new flashback model is proposed, which identifies the heat transfer to the burner rim and the flame speed as the main drivers for the onset of flashback, whereas the flame backpressure is the governing factor for the subsequent upstream flame propagation.


2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180441 ◽  
Author(s):  
Per Henningsson ◽  
Lasse Jakobsen ◽  
Anders Hedenström

In this study, we explicitly examine the aerodynamics of manoeuvring flight in animals. We studied brown long-eared bats flying in a wind tunnel while performing basic sideways manoeuvres. We used particle image velocimetry in combination with high-speed filming to link aerodynamics and kinematics to understand the mechanistic basis of manoeuvres. We predicted that the bats would primarily use the downstroke to generate the asymmetries for the manoeuvre since it has been shown previously that the majority of forces are generated during this phase of the wingbeat. We found instead that the bats more often used the upstroke than they used the downstroke for this. We also found that the bats used both drag/thrust-based and lift-based asymmetries to perform the manoeuvre and that they even frequently switch between these within the course of a manoeuvre. We conclude that the bats used three main modes: lift asymmetries during downstroke, thrust/drag asymmetries during downstroke and thrust/drag asymmetries during upstroke. For future studies, we hypothesize that lift asymmetries are used for fast turns and thrust/drag for slow turns and that the choice between up- and downstroke depends on the timing of when the bat needs to generate asymmetries.


2012 ◽  
Vol 15 (3) ◽  
pp. 193-195 ◽  
Author(s):  
K. Hashimoto ◽  
A. Hori ◽  
T. Hara ◽  
S. Onogi ◽  
H. Mouri

Sign in / Sign up

Export Citation Format

Share Document