Influence of Varying Height of Guide Vanes on the Performance of a Diesel Engine Run with Biodiesel

2017 ◽  
Author(s):  
Saiful Bari ◽  
Idris Saad
Keyword(s):  
1982 ◽  
Author(s):  
M. Rautenberg ◽  
A. Mobarak ◽  
M. Malobabic

Turbocharged passenger cars have been in use more than three decades. However, the behavior of the engine at low engine speeds is still unsatisfactory. Experimental work has been carried out on turbochargers aiming to improve the behavior of the engine at low speeds. For this purpose a turbine with adjustable guide vanes has been designed and tested. These experiments were done on a turbocharged 31 diesel engine from Daimler-Benz. Three different turbine nozzle blades have been designed and tested without using a waste gate. The results are compared with those of the Garrett-turbocharger T03 which was originally installed with the engine.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 151518-151530
Author(s):  
Hailin Kui ◽  
Yunzhen Guo ◽  
Changran Fu ◽  
Shengwei Peng

Author(s):  
S. Bari ◽  
Idris Saad

This research investigated the effect of guide vanes into the intake runner of a diesel engine run with higher viscous biodiesel to enhance the in-cylinder intake airflow characteristics. First, simulation of an internal combustion engine base model was done. Guide vanes of various lengths were developed and imposed into the intake runner to investigate the airflow characteristics. Based on the simulation results, five guide vanes models of 8, 10, 12, 14, and 16 mm length were constructed and tested on a compression ignition (CI) engine run with biodiesel. According to the experimental results of engine performance and emissions, it was found that guide vanes of 12 mm length showed the highest number of improvements with 14 mm and 10 mm length showed the second and third highest number of improvements, respectively. Therefore, this research concluded that guide vanes successfully improved the in-cylinder air flow characteristics to improve the mixing of higher viscous biodiesel with air resulting in better performances of the engines than without vanes.


1915 ◽  
Vol 80 (2085supp) ◽  
pp. 394-395
Author(s):  
C. Kloos
Keyword(s):  

Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Author(s):  
M. A. Adzmi ◽  
A. Abdullah ◽  
Z. Abdullah ◽  
A. G. Mrwan

Evaluation of combustion characteristic, engine performances and exhaust emissions of nanoparticles blended in palm oil methyl ester (POME) was conducted in this experiment using a single-cylinder diesel engine. Nanoparticles used was aluminium oxide (Al2O3) and silicon dioxide (SiO2) with a portion of 50 ppm and 100 ppm. SiO2 and Al2O3 were blended in POME and labelled as PS50, PS100 and PA50, PA100, respectively. The data results for PS and PA fuel were compared to POME test fuel. Single cylinder diesel engine YANMAR TF120M attached with DEWESoft data acquisition module (DAQ) model SIRIUSi-HS was used in this experiment. Various engine loads of zero, 7 N.m, 14 Nm, 21 N.m and 28 N.m at a constant engine speed of 1800 rpm were applied during engine testing. Results for each fuel were obtained by calculating the average three times repetition of engine testing. Findings show that the highest maximum pressure of nanoparticles fuel increase by 16.3% compared to POME test fuel. Other than that, the engine peak torque and engine power show a significant increase by 43% and 44%, respectively, recorded during the PS50 fuel test. Meanwhile, emissions of nanoparticles fuel show a large decrease by 10% of oxide of nitrogen (NOx), 6.3% reduction of carbon dioxide (CO2) and a slight decrease of 0.02% on carbon monoxide (CO). Addition of nanoparticles in biodiesel show positive improvements when used in diesel engines and further details were discussed.  


Sign in / Sign up

Export Citation Format

Share Document