Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018 ◽  
Author(s):  
Kentaro Horiuchi ◽  
Shinichi Sakaguchi
2021 ◽  
Author(s):  
BINITA NANDA ◽  
Praveen Kumar

<div>This paper proposes an analytical model to calculate the airgap function and inductance, which can be used to get an optimal design during the initial design phase. It investigates the relationship between the design parameters of the rotor and the motor performance.</div><div><br></div><div>This paper is under review in IEEE Transactions on Energy Conversion.<br></div>


2021 ◽  
Author(s):  
BINITA NANDA ◽  
Praveen Kumar

<div>This paper proposes an analytical model to calculate the airgap function and inductance, which can be used to get an optimal design during the initial design phase. It investigates the relationship between the design parameters of the rotor and the motor performance.</div><div><br></div><div>This paper is under review in IEEE Transactions on Energy Conversion.<br></div>


2021 ◽  
Author(s):  
BINITA NANDA ◽  
Praveen Kumar

<div>This paper proposes an analytical model to calculate the airgap function and inductance, which can be used to get an optimal design during the initial design phase. It investigates the relationship between the design parameters of the rotor and the motor performance.</div><div><br></div><div>This paper is under review in IEEE Transactions on Energy Conversion.<br></div>


2018 ◽  
Vol 1 (1) ◽  
pp. 1072-1079
Author(s):  
Şenol Gülgönül ◽  
Nedim Sözbir

Propellant budget of the geostationary satellites has to be calculated during preliminary design phase to properly size propellant tanks, mass and dimensions of the satellite. Lifetime of the satellite depends on the propellant budget. A guideline for calculation of propellant budget of geostationary satellites is presented. Proposed method has enough accuracy for initial design phase of the satellite.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 752-758 ◽  
Author(s):  
Anish Tuteja ◽  
Wonjae Choi ◽  
Gareth H. McKinley ◽  
Robert E. Cohen ◽  
Michael F. Rubner

AbstractRecent experiments have revealed that the wax on the lotus leaf surface, by itself, is weakly hydrophilic, even though the lotus leaf is known to be superhydrophobic. Conventional understanding suggests that a surface of such waxy composition should not be able to support superhydrophobicity and high contact angles between a liquid and the surface. Here, we show that the unexpected superhydrophobicity is related to the presence of “reentrant texture” (that is, a multivalued surface topography) on the surface of the lotus leaf. We exploit this understanding to enable the development of superoleophobic surfaces (i.e., surfaces that repel extremely low-surface-tension liquids, such as various alkanes), where essentially no naturally oleophobic materials exist. We also develop general design parameters that enable the evaluation of the robustness of the composite interface on a particular surface. Based on these design parameters, we also rank various superhydrophobic and superoleophobic substrates discussed in the literature, with particular emphasis on surfaces developed from inherently hydrophilic or oleophilic materials.


2021 ◽  
Author(s):  
Stefan Krüger ◽  
Katja Aschenberg

Abstract The revised SOLAS 2020 damage stability regulations have a strong impact on possible future ship designs. To cope with these requirements, damage stability investigations must become a central part of the initial design phase, and many internal subdivision concepts need to be investigated. Unfortunately, if damage stability calculations are performed in the classical way, they are very time consuming with respect to modelling and computational time. This fact has impeded the consequent subdivision optimization in the past. Therefore, a simulation procedure for damage stability problems was developed which treats damage stability as a stochastic process which was modeled by a Monte Carlo simulation. If statistical damage distributions are once known, the Monte Carlo simulation delivers a population of damages which can be automatically related to certain damage cases. These damage cases can then be investigated with respect to their survivability. Applying this principle to damage stability problems reduces the computational effort drastically where at the same time no more manual modelling is required. This development does especially support the initial design phase of the compartmentation and leads to a safer and more efficient design. If this very efficient simulation principle shall now also be used after the initial design phase for the generation of approval documents, additional information needs to be generated by the simulation method which is not directly obtained during the simulation: This includes detailed individual probabilities in all three directions and the integration of all damage cases into predefined damage zones. This results in fact in a kind of reverse engineering of the manual damage stability process to automatically obtain this required information. It can be demonstrated that the time to obtain the final documents for the damage stability approval can be drastically reduced by implementing this principle.


2014 ◽  
Vol 906 ◽  
pp. 318-322 ◽  
Author(s):  
M. Fazlay Rabbey ◽  
Anik Mahmood Rumi ◽  
Farhan Hasan Nuri ◽  
Hafez M. Monerujjaman ◽  
M. Mehedi Hassan

Wing of an aircraft is lift producing component. It makes aircraft airborne by generating lift>weight. The wing must take the full aircraft weight during flying. So, it is very sophisticated task for designing a wing by keeping consideration of every design parameters simultaneously. This paper contains analysis of structural properties of wing by using finite element method. For well-organized design all the variables must be considered from the beginning of the design phase. The design phases for aircraft are: conceptual, preliminary and detail design. Until the preliminary design phase the aircraft structure is not considered. During these phases the material of the wing should be selected in such a way so that it can perform efficiently with less unexpected phenomena (drag) for which responsible properties are displacement, stress etc. Currently the most focusing area for the aero-elastic investigation is to design wing with good aerodynamic shape which will associated with less dragging structural behavior. It helps to reduce SFC (Specific Fuel Consumption) and so the cost. The analysis on that has done through Computational means as well as simulation technique to develop knowledge about the variation of aircraft wing structural properties.


Author(s):  
Asko Ellman ◽  
Sami Pajunen ◽  
Ilari Laine ◽  
Eric Coatanea

Model-based product design using computer simulation has become a standard design practice in most companies in mechanical engineering. However, there is a need for efficient simulation tools that can provide design-supporting information already at early design phase when the most important decisions are made. Design process and design tools need to be agile and enable iterative process where the design and its requirements can effectively be iterated. Low-fidelity models can be part of the solution for time issue in early design phase. Low-fidelity prototypes are simplified representations of functions and concepts in the virtual prototype. Axiomatic design with low-fidelity modelling approach is a promising concept for achieving design-supporting information in an efficient way. In this method, there is a linear mapping between design parameters and system characteristics. Non-linear models of the system are linearized at the nominal point. An engineering design analysis tool (EDA tool) to enhance EDA is constructed and presented in this paper. For evaluation of the usefulness of this tool, a case study is presented. The case study deals with a simple hydraulic crane that is manufactured from steel plate. The results of the case study design are compared with results achieved with conventional CAD and FEM tools. Modelling accuracy and required modelling and simulation efforts are compared in both cases.


Sign in / Sign up

Export Citation Format

Share Document