scholarly journals Calculation of airgap function and inductance using analytical modeling of rotor magnetic characteristics of an IPM motor under loaded condition

Author(s):  
BINITA NANDA ◽  
Praveen Kumar

<div>This paper proposes an analytical model to calculate the airgap function and inductance, which can be used to get an optimal design during the initial design phase. It investigates the relationship between the design parameters of the rotor and the motor performance.</div><div><br></div><div>This paper is under review in IEEE Transactions on Energy Conversion.<br></div>

2021 ◽  
Author(s):  
BINITA NANDA ◽  
Praveen Kumar

<div>This paper proposes an analytical model to calculate the airgap function and inductance, which can be used to get an optimal design during the initial design phase. It investigates the relationship between the design parameters of the rotor and the motor performance.</div><div><br></div><div>This paper is under review in IEEE Transactions on Energy Conversion.<br></div>


2021 ◽  
Author(s):  
BINITA NANDA ◽  
Praveen Kumar

<div>This paper proposes an analytical model to calculate the airgap function and inductance, which can be used to get an optimal design during the initial design phase. It investigates the relationship between the design parameters of the rotor and the motor performance.</div><div><br></div><div>This paper is under review in IEEE Transactions on Energy Conversion.<br></div>


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shengjie Wang ◽  
Kun Wang ◽  
Chunsong Zhang ◽  
Jian S Dai

Abstract A kinetostatic approach applied to the design of a backflip strategy for quadruped robots is proposed in this paper. Inspired by legged animals and taking the advantage of the leg workspace, this strategy provides an optimal design idea for the low-cost quadruped robots to achieve self-recovery after overturning. Through kinetostatic and energy analysis, a four-stepped backflip strategy based on the selected rotation axis with minimum energy is proposed, with a process of selection, lifting, rotating, and protection. The kinematic factors that affect the backflip are investigated, along with the relationship between the design parameters of the leg and trunk being analyzed. At the end of this paper, the strategy is validated by a simulation and experiments with a prototype called DRbot, demonstrating that the strategy endows the robot a strong self-recovery ability in various terrains.


2011 ◽  
Vol 317-319 ◽  
pp. 616-620 ◽  
Author(s):  
Guang Qing Wang ◽  
Zhong Wei Zhao

In this article, a novel electro-mechanical energy conversion model of power harvesting from the vibration-induced the piezoelectric stator of the traveling wave rotary ultrasonic motor was proposed. Based on the curvature basis approach, the relationship between the deduced voltage and the mechanical stain induced by piezoelectric polarization was formulated. In addition to the relationships between the maximum induced voltages at the resonance frequency, the conversion energy density and the dimensions of the piezoelectric stator were also derived. The analytical model shows that the vibration-induced voltage is proportional to the exciting electrical voltage magnitude and square of height of the piezoelectric ceramic (PZT) but is inversely proportional to the permittivity of PZT and the damping coefficient of the stator. Some simulations and experimental results demonstrate that the maximum output voltage coincides with the energy conversion analytical model.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8034
Author(s):  
Mingyu Choi ◽  
Gilsu Choi

Interior permanent magnet (IPM) machines with hairpin windings have attracted significant attention in EV applications owing to their low DC resistance and excellent thermal capabilities. In this paper, we present a comprehensive investigation of AC winding losses in IPM machines for traction applications, including analytical modeling, the influence of design parameters, and finite element (FE) verification. The proposed analytical model can predict the trends in AC winding losses for any number of bar conductors and slot/pole combinations. The results of the parametric study, obtained via the analytical model, are presented to examine the effects of key design parameters, such as conductor width and height, phase arrangement, and slot-per-pole-per-phase (SPP). To incorporate more practical issues into the analysis of IPM machines with hairpin windings, extensive FE simulations were conducted. The results indicated that the AC winding losses decrease with an increasing number of conductor layers and phases inside the slot.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Hesam Ahmadian Behrooz

Abstract This paper presents a chance-constrained multiobjective optimization framework for the optimal design of gas transmission lines (GTL) in which the total annual cost (TAC) and operability index as the two conflicting objectives are minimized and maximized, respectively. The delivery flow rates are assumed to be random Gaussian variables since the customer demand can be uncertain in the design phase. Accordingly, a robustness measure is introduced in order to quantify the risk of the final design against delivery uncertainties. The proposed model is capable of determining the optimum design variables including the pipeline diameter and thickness along with the location of the compressor stations and their capacities. The effects of design parameters including pipe thickness, pipe diameter and customer demand uncertainty level on the design of a GTL are investigated from economic as well as the robustness point of view. It is shown that the design with the highest nominal pipe size (NPS) and least thickness possible is the optimal design when TAC is considered as the objective function while the design with both the highest NPS and thickness possible shows the highest robustness and flexibility against delivery demand fluctuations. The final decision about the optimal NPS and thickness should be made on the basis of the expected uncertainty of the customer future demand. The results also can quantitatively suggest the required over-design factor that must be considered in the design phase of the GTL for various compressor stations.


2019 ◽  
Vol 1 (3) ◽  
pp. 1-10
Author(s):  
Mikhail M. Konstantinov ◽  
Ivan N. Glushkov ◽  
Sergey S. Pashinin ◽  
Igor I. Ognev ◽  
Tatyana V. Bedych

In this paper we consider the structural and technological process of the combine used in the process of separate harvesting of grain crops, as well as a number of its parameters. Among the main units of the combine, we allocate a conveyor and devices for removing beveled stems from under the wheels of the vehicle. The principle of operation of the conveyor at different phases of the Reaper and especially the removal of cut stems from under the wheels of the vehicle during operation of the Reaper. The results of theoretical studies on the establishment of the optimal design of the parameters of the belt conveyor are presented, the ranges of their optimal values are considered and determined. Studies on the establishment of optimal parameters of the screw divider in the Reaper, which is the main component of the device for removal of beveled stems, are presented. Taking into account the optimal design and mode of operation of the screw divider, the correct work is provided to remove the cut stems from under the wheels of the harvester.


2019 ◽  
Vol 1 (7) ◽  
pp. 10-13
Author(s):  
D. Yu. Ershov ◽  
I. N. Lukyanenko ◽  
E. E. Aman

The article shows the need to develop diagnostic methods for monitoring the quality of lubrication systems, which makes it possible to study the dynamic processes of contacting elements of the friction systems of instrument mechanisms, taking into account roughness parameters, the presence of local surface defects of elements and the bearing capacity of a lubricant. In the present article, a modern diagnostic model has been developed to control the quality of the processes of production and operation of friction systems of instrument assemblies. With the help of the developed model, it becomes possible to establish the relationship of diagnostic and design parameters of the mechanical system, as well as the appearance of possible local defects and lubricant state, which characterize the quality of friction systems used in many mechanical assemblies of the mechanisms of devices. The research results are shown in the form of nomograms to assess the defects of the elements of friction mechanisms of the mechanisms of the devices.


Author(s):  
Jannes Daemen ◽  
Arvid Martens ◽  
Mathias Kersemans ◽  
Erik Verboven ◽  
Steven Delrue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document