Assessment of Numerical Cold Flow Testing of Gas Turbine Combustor through an Integrated Approach Using Rapid Prototyping and Water Tunnel

2019 ◽  
Author(s):  
Sundararaj Senthilkumar ◽  
Ssheshan Pugazhendhi
2005 ◽  
Author(s):  
V. Ganesan ◽  
V. Jyothish Kumar

Present work is concerned with the flow field analysis inside an annular gas turbine combustor both under non-reacting and reacting conditions. Three-dimensional gas turbine combustor of 20-degree sector has been modeled using the pre-processor GAMBIT. Flow through the combustor has been simulated using FLUENT code by solving the appropriate governing equations viz., conservation of mass, momentum and energy. RNG κ-ε turbulence model is used for physical modeling. Initially prediffuser optimization has been carried out with respect to angle, length and contours. Flow through holes is modeled using porous jump boundary condition as well as modeling real holes themselves to study the efficacy of real hole modeling. Total pressure loss has been calculated to evaluate the cold flow as well as hot flow losses. Combustion has been modeled using the Probability Density Function (PDF) approach. Temperature and species concentrations are predicted.


Author(s):  
J. Allan

An approach for predicting the relative tendency for weak extinction among similar gas turbine premix combustors is presented. The method involves analyzing CFD (computational fluid dynamics) solutions so as to evaluate the recirculating masses in the primary zone and the resulting potential heating rate of incoming fresh mixture. Results are illustrated for two combustor geometries which look similar but have very different behaviour. The comparison between the combustors agrees with test data when the CFD model incorporates a simulation of the flame. The inadequacy of cold flow models for the purpose is shown.


Author(s):  
F. Wang ◽  
Y. Huang ◽  
T. Deng

Multi-injection combustor (MIC) could extend the steady working range of the whole combustor and reduce emissions therefore, so it is one of the Gas Turbine Combustor (GTC) design direction of future. The cold flow character of MIC is the basic work for MIC designers. Because of the low cost nowadays, the CFD method is a very suitable tool for it. Thus, firstly realizable k-epsilon turbulent model (RKE) and Reynolds stress turbulent model (RSM) were used to simulate the downstream flow field of a double radial swirl-cup amongst a simple tube, and the prediction results are compared with the experimental data which are gained by another researcher in Beihang University. The comparison between the experimental data and the CFD prediction results are shown that in most regions, the prediction results quite agree with the experimental data, and the max error of RKE model and RSM model is about 5% and 3% respectively. So the RKE model can be used for swirl-cup combustor simulation for its low computing cost. Then the RKE model is applied in a single swirl-cup gas turbine combustor and two kinds of multi-injection GTC flow field simulation. In the comparison between one single swirl-cup and nine arranged swirl-cups which all are in the same lining structure, each swirl-cup in MIC has a recirculation zone after its exit. Gradually, the recirculation zones mixed and united together in the downstream region. Finally, the recirculation zones structure turns to be similar to the structure in the single swirl-cup GTC after the primary combustion holes. In the other comparison between two kinds of lining structures which all are fixed with the same multi-injection head, the primary combustion holes affect flow field obviously. All the recirculation zones finished before the former primary combustion holes of the MIC without the primary combustion holes, and the separated recirculation zones form a new recirculation zone close to the primary holes for the MIC with primary holes. So the MIC design should combine with the real combustor lining structure to make a high performance for the whole combustor.


Author(s):  
R. Kneer ◽  
M. Willmann ◽  
R. Zeitler ◽  
S. Wittig ◽  
K.-H. Collin

1992 ◽  
Author(s):  
JAYESH MEHTA ◽  
P. MUNGUR ◽  
W. DODDS ◽  
L. DODGE

Author(s):  
Veeraraghava Raju Hasti ◽  
Prithwish Kundu ◽  
Gaurav Kumar ◽  
Scott A. Drennan ◽  
Sibendu Som ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document