Analytical Rotordynamic Study of a High-Speed Gear Transmission System for Race Applications

2020 ◽  
Author(s):  
Brett Friskney ◽  
Stephanos Theodossiades ◽  
Mahdi Mohammadpour
2021 ◽  
Vol 69 (4) ◽  
pp. 373-388
Author(s):  
Zhaoping Tang ◽  
Min Wang ◽  
Xiaoying Xiong ◽  
Manyu Wang ◽  
Jianping Sun ◽  
...  

Under high-speed operating conditions, the noise caused by the vibration of the traction gear transmission system of the Electric Multiple Units (EMU) will distinctly reduce the comfort of passengers. Therefore, analyzing the dynamic characteristics of traction gears and reducing noise from the root cause through comprehensive modification of gear pairs have become a hot research topic. Taking the G301 traction gear transmission system of the CRH380A high-speed EMU as the research object and then using Romax software to establish a parametric modification model of the gear transmission system, through dynamics, modal and Noise Vibration Harshness (NVH) simulation analysis, the law of howling noise of gear pair changes with modification parameters is studied. In the small sample training environment, the noise prediction model is constructed based on the priority weighted Back Propagation (BP) neural network of small noise samples. Taking the minimum noise of high-speed EMU traction gear transmission as the optimization goal, the simulated annealing (SA) algorithm is introduced to solve the model, and the optimal combination of modification parameters and noise data is obtained. The results show that the prediction accuracy of the prediction model is as high as 98.9%, and it can realize noise prediction under any combination of modification parameters. The optimal modification parameter combination obtained by solving the model through the SA algorithm is imported into the traction gear transmission system model. The vibration acceleration level obtained by the simulation is 89.647 dB, and the amplitude of the vibration acceleration level is reduced by 25%. It is verified that this modification optimization design can effectively reduce the gear transmission.


Author(s):  
Zhibin Li ◽  
Sanmin Wang ◽  
Fei Li ◽  
Qi'an Peng ◽  
Jianfeng Li

Compared with traditional gear transmission, the multi-branch split-torsion gear transmission system has the advantages of large transmission power, small size and high reliability, so it is more and more used in high-speed heavy load occasions such as ships and aircraft. Since the transmission system of multi-branch split torsional gears belongs to over-constrained configuration, it is necessary to meet strict tooth matching condition in the design process in order to realize the correct synchronous meshing of each branch, which is of great significance to ensure its uniform installation and motion synchronization.Aiming at the coaxial six-branch twisted herringbone gear transmission system, this paper establishes a calculation method for the proper meshing conditions of each branch on the basis of considering the movement synchronization of each branch and preventing geometric interference.In addition, the calculation of gear allocation was carried out for a ship's power transmission system, and a parameter scheme that satisfies the requirements of transmission ratio, concentricity and synchronous meshing was obtained.The correctness of the calculation method of tooth matching in this paper is verified by three-dimensional modeling. This method has universal application value to the tooth matching design of other coaxial multi-branch gear transmissions.


Author(s):  
Zhiwei Wang ◽  
Yao Cheng ◽  
Guiming Mei ◽  
Weihua Zhang ◽  
Guanhua Huang ◽  
...  

The gear transmission system of a high-speed train is the key component, which delivers the traction torque from the motor to the wheelset. It couples with the vehicle system via the suspension system, gear meshing and the wheel–rail interface. The dynamic performance of the transmission system directly affects the operational reliability or even the running safety of high-speed trains. In this study, the effects of wheel polygonalisation and wheel flat on the dynamic responses of the transmission system are investigated through simulations of a novel vehicle dynamics model. This model integrates the flexible gearbox housing, the time-varying mesh stiffness and the nonlinear gear tooth backlash, and the track irregularities to obtain more realistic responses of the traction transmission systems in a vehicle vibration environment, from motors to wheelsets, under the effects of the wheel flat and polygonal wear. The field experimental tests are implemented for a vehicle running along a main high-speed railway line in China. Subsequently, the developed dynamics model is validated with good agreement between the experimental and the theoretical results. The calculated results revealed that wheel flat and wheel polygonal wear caused a high-frequency fluctuation of both the longitudinal creep force and the gear mesh force, causing a violent and complex torsional vibration of the gear transmission system. Moreover, the flexible deformation of the gearbox housing, especially its resonance due to the wheel polygonal wear, contributed to the torsional vibration of the gear transmission system.


Author(s):  
Nawaj I. Mulla ◽  
Vishal V. Dhende

Gear transmission system plays an important role in many of the mechanical systems. Vibration is the major problem and unavoidable in gear transmission system because high speed and heavy loading condition. High temperature and harsh working condition limits the other vibration absorption methods. Particle friction & impact damping is passive method of vibration absorption. Ordinary particle damping method gives the random movement of particles. In this research holes are provided to the gear and put cylindrical impact particles in particular hole gives the friction and impact effect to absorb the vibration. The mathematical analysis is formulated for the system also run MATLAB program and found out plot for displacement v/s time. DEM simulation carried out using EDEM software which is used to perform simulations at different speed and to analyze the energy dissipation during particle collisions and compared the energy absorbed by the particles of different materials for varying speed.


2014 ◽  
Vol 635-637 ◽  
pp. 519-522
Author(s):  
Tao Wang ◽  
Chen Xie ◽  
Feng Wang ◽  
Xiao Rui Hu ◽  
Li Ming Hu

With the study of a certain servo gear transmission system, a three-dimensional parametric design of servo drive system is made based on SolidWorks and its plug-in GearTrax. The model is introduced into ANSYS through a special interface, and the finite element modal solutionsare obtained. Aiming at solving the practical problem that the static linear modal analysis methods fail to meet the working conditions of high speed rotation and frequent variable speeds, this paper proposes an effective way of determining the range of the system natural frequency through figuring out the natural frequencies in two critical states. Thus, it provides an important basis for the credible design of the servo drive system and a reliable theoretical guidance and reference data for its design, use and maintenance.


2019 ◽  
Vol 55 (18) ◽  
pp. 104 ◽  
Author(s):  
SUN Gang ◽  
REN Zunsong ◽  
XIN Xin ◽  
WEI Xue

Sign in / Sign up

Export Citation Format

Share Document