polygonal wear
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 712
Author(s):  
Wangang Zhu ◽  
Wei Sun ◽  
Hao Wu

The vibration data of the gearbox on a high-speed train was measured, and the vibration characteristics were analyzed in this paper. The dynamic stress of the gearbox under the internal and external excitation was examined by a railway vehicle dynamic model with a flexible gearbox and a flexible wheelset. The ideal 20th polygonal wear was considered, and dynamic stresses of the gearbox under different polygonal wear amplitudes were calculated. The gear transmission model was established to study the dynamic stress of the gearbox under the influence of the time-varying stiffness of the gear meshing. Based on the rigid–flexible coupling model, and considering the influence of wheel polygonization, gear meshing time-varying stiffness, and wheelset elastic deformation, the dynamic stress of the gearbox was investigated with consideration of the measured polygonal wear and measured rail excitation. The results show that the dynamic stress of the gearbox is dominated by the wheel polygonization. Moreover, not only the wheel polygonization excites the resonance of the gearbox, but also the flexible deformation of the wheelset leads to the deformation of the gearbox, which also increases the dynamic stress of the gearbox. Within the resonant bandwidth of the frequency, the amplitude of the dynamic stresses in the gearbox will increase considerably compared with the normal case.


Wear ◽  
2022 ◽  
pp. 204234
Author(s):  
W.U. Yue ◽  
Wang Jianuo ◽  
L.I.U. Moukai ◽  
J.I.N. Xuesong ◽  
H.U. Xiaoyi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yahong Dong ◽  
Shuqian Cao

Wheel polygonal wear has long been a problem that confused the safety of railway operation which has important theoretical value and research significance. In this paper, the conditions of polygonal wear of high-speed wheel are analyzed based on the wear model and verified by the field measured data. Considering the wheel track interaction caused by rotation, a finite element model of wheelset rotor dynamics is established. The effects of rotor speed, mass eccentricity, wheelset, and track flexibility on the vibration characteristics of wheelset rotor system and wheel polygonal wear characteristics are analyzed by beam element and solid element, respectively. The results show that the wheel longitudinal vibration is the main reason of wheel polygonal wear, and the wheel polygonal wear follows the law of “constant frequency and divisible.” Its “constant frequency” comes from the wheel track contact vibration, which stimulates the third-order vertical bending vibration of wheelset and the eighth-order coupled bending vibration of track, and the order is equal to the ratio of “constant frequency” to the wheelset rotation frequency.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jian Mu ◽  
Jing Zeng ◽  
Qunsheng Wang ◽  
Hutang Sang

The polygonal wear around the wheel circumference could pose highly adverse influences on the wheel/rail interactions and thereby the performance of the vehicle system. In this study, the effects of wheel polygonalisation on the dynamic responses of a freight wagon are investigated through development and simulations of a comprehensive coupled vehicle-track dynamic model. The model integrates flexible ballasted track and wheelsets subsystem models so as to account for elastic deformations caused by impact loads induced by the wheel polygonalisation. Subsequently, the vehicles with low-order polygonal wear, whether in empty or loaded conditions, are simulated at different speeds considering different amplitudes and harmonic orders of the wheel polygonalisation and thus the mapping relation between wheel/rail impact force and wheel polygonalisation is obtained. The results reveal that the low-order wheel polygonalisation except 1st order and 3rd order can give rise to high-frequency impact loads at the wheel/rail interface and excite 1st-bend modes of the wheelset and “P2 resonance” leading to high-magnitude wheel/rail contact force at the corresponding speed.


2021 ◽  
pp. 1-13
Author(s):  
X. Kang ◽  
G. X. Chen ◽  
Q. Zhu ◽  
W. J. Ren ◽  
B. J. Dong

Sign in / Sign up

Export Citation Format

Share Document