Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance

1965 ◽  
Author(s):  
Walter B. Horne ◽  
Upshur T. Joyner
2017 ◽  
Vol 45 (3) ◽  
pp. 175-199 ◽  
Author(s):  
Mattias Hjort ◽  
Olle Eriksson ◽  
Fredrik Bruzelius

ABSTRACT This work presents a comprehensive study of the performance of winter tires on snow, ice, and asphalt. A set of 77 different winter tires were carefully selected for the study. Of these, 27 were new and 50 were worn from real traffic use. All three tire types for winter conditions (Nordic, European, and studded) were represented. All tires have been tested using a mobile tire-testing device for snow and asphalt and using a stationary tire-testing facility for ice. Both devices recorded the tire forces and motions, enabling a close to complete stationary characterization of the tires. In addition, 42 of the tires were tested on a passenger car, where brake performance was evaluated for the three different road conditions. This enables a comparative study of performance between tire types and wear for various winter road conditions. The results suggest that the recorded data represent real vehicle performance. Some conclusions from the measurements are that the effect of wear is consistent between the tire groups and that the performance degradation is most noticeable on studded tires on ice and on European tires on snow.


1976 ◽  
Vol 4 (3) ◽  
pp. 181-189 ◽  
Author(s):  
S. K. Clark

Abstract An idealized model is proposed for heating of a pneumatic tire. A solution is obtained for the temperature rise of such a model. Using known thermal properties of rubber and known heat transfer coefficients, the time to reach thermal equilibrium is estimated.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098468
Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Yijiang Ma ◽  
Hongxun Fu

The camber and cornering properties of the tire directly affect the handling stability of vehicles, especially in emergencies such as high-speed cornering and obstacle avoidance. The structural and load-bearing mode of non-pneumatic mechanical elastic (ME) wheel determine that the mechanical properties of ME wheel will change when different combinations of hinge length and distribution number are adopted. The camber and cornering properties of ME wheel with different hinge lengths and distributions were studied by combining finite element method (FEM) with neural network theory. A ME wheel back propagation (BP) neural network model was established, and the additional momentum method and adaptive learning rate method were utilized to improve BP algorithm. The learning ability and generalization ability of the network model were verified by comparing the output values with the actual input values. The camber and cornering properties of ME wheel were analyzed when the hinge length and distribution changed. The results showed the variation of lateral force and aligning torque of different wheel structures under the combined conditions, and also provided guidance for the matching of wheel and vehicle performance.


Author(s):  
Melissa R. Freire ◽  
Cassandra Gauld ◽  
Angus McKerral ◽  
Kristen Pammer

Sharing the road with trucks is associated with increased risk of serious injury and death for passenger vehicle drivers. However, the onus for minimising risk lies not just with truck drivers; other drivers must understand the unique performance limitations of trucks associated with stopping distances, blind spots, and turning manoeuverability, so they can suitably act and react around trucks. Given the paucity of research aimed at understanding the specific crash risk vulnerability of young drivers around trucks, the authors employ a narrative review methodology that brings together evidence from both truck and young driver road safety research domains, as well as data regarding known crash risks for each driving cohort, to gain a comprehensive understanding of what young drivers are likely to know about heavy vehicle performance limitations, where there may be gaps in their understanding, and how this could potentially increase crash risk. We then review literature regarding the human factors affecting young drivers to understand how perceptual immaturity and engagement in risky driving behaviours are likely to compound risk regarding both the frequency and severity of collision between trucks and young drivers. Finally, we review current targeted educational initiatives and suggest that simply raising awareness of truck limitations is insufficient. We propose that further research is needed to ensure initiatives aimed at increasing young driver awareness of trucks and truck safety are evidence-based, undergo rigorous evaluation, and are delivered in a way that aims to (i) increase young driver risk perception skills, and (ii) reduce risky driving behaviour around trucks.


Sign in / Sign up

Export Citation Format

Share Document