Effect of Piston Deposits, Fuel Sulfur, and Lubricant Viscosity on Diesel Engine Oil Consumption and Cylinder Bore Polishing

1983 ◽  
Author(s):  
J. A. McGeehan
1993 ◽  
Author(s):  
Hideki Yoshida ◽  
Masaki Yamada ◽  
Hiroyuki Kobayashi

2003 ◽  
Vol 125 (4) ◽  
pp. 1081-1089 ◽  
Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring-pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions, and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
Akemi Ito ◽  
Kazuya Mochiduki ◽  
Koji Kikuhara ◽  
Masatsugu Inui ◽  
Hirotaka Akamatsu

Engine oil consumption must be reduced for reducing exhaust gas emissions. It is well known that a cylinder bore shape under engine operating condition affects oil consumption. This study aimed clarifying the conformability of an oil ring against the distorted cylinder bore. Oil film thickness at the sliding surface of oil ring upper and lower rails was successfully measured by LIF method using optical fiber, which was embedded in the oil ring. The piston motion was also measured and compared with measured oil film thickness. It was found that the piston tilting motion affected oil film thickness hence its conformability. It was also found that thicker oil film was found at the following rail than that at former rail, and it was suggested that oil was supplied to the following rail from not only the sliding surface of the former ring but also somewhere, for example, the oil ring groove.


1999 ◽  
Vol 122 (4) ◽  
pp. 520-525 ◽  
Author(s):  
D. E. Richardson ◽  
S. A. Krause

Durability is very important for current diesel engines. Diesel engine manufacturers are trying to make the engines live as long as possible before overhaul. The time to overhaul for an engine is usually dictated by high oil consumption or blowby. Therefore, it is necessary to understand how wear affects the cylinder kit dynamics, oil consumption, and blowby in an engine. This paper explores the effect of power cylinder component (rings and cylinder bore) wear by using a cylinder kit dynamics model. The model predicts how wear will affect ring motion, inter-ring gas pressure, blowby, etc. The parameters studied were: liner wear, ring face wear, and ring side wear. Two different engines were modeled. The characteristics of these two engines are very different. As a result, the effects of wear are different and the corresponding durability will be different. This illustrates the need to model each individual type of engine separately. The modeling shows that top ring face wear is very significant for maintaining good oil and blowby control. Liner wear is important, but does not have as large an effect as ring wear. The effects of side wear are significant for these two cases. [S0742-4795(00)00203-9]


1982 ◽  
Vol 15 (2) ◽  
pp. 104
Author(s):  
W.C. Pike

Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring–pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
K. G. Mahmoud ◽  
O. Knaus ◽  
T. Parikyan ◽  
M. Patete

The automotive industry is subjected to increasing pressure in order to improve fuel efficiency and reduce the CO2 emissions of internal combustion (IC) engines. The power cylinder system (piston, piston ring, and liner) contributes significantly to the friction losses, engine oil consumption and gas leakage called blow-by. The role of cylinder bore shape in engine performance has been the subject of several studies in recent years. High bore distortion must be avoided because it can lead to ring conformability issues, which leads to inadequate sealing resulting in increased blow-by and oil consumption. It also leads to asperity contact between the piston skirt and cylinder bore increasing friction causing abnormally high surface wear. Although bore distortion cannot be eliminated, engine manufacturers strive to contain it within acceptable limits. Therefore, numerical analysis of the power cylinder with physically based mathematical models becomes very essential to the engine and component manufacturer in order to reduce engine development lead time and minimize the number of engine tests. The integrated ring-pack modeling methodology developed by the authors [1] is used to investigate the piston ring-pack performance. Although the modeling approach can be used for extensive parameter analysis of piston, piston rings and lubrication oil consumption, the influence of the bore distortion on the ring conformability and its impact on blow-by, friction and wear is highlighted in this study. Piston tilting, piston ring twist and surface roughness of the piston ring and liner have been taken into consideration.


1991 ◽  
Author(s):  
Hideki Yoshida ◽  
Kazunori Kusama ◽  
Hiroyuki Kobayashi

1993 ◽  
Author(s):  
Eric W. Schneider ◽  
Daniel H. Blossfeld ◽  
Donald C. Lechman ◽  
Robert F. Hill ◽  
Richard F. Reising ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document